A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
Foundation models for time series analysis: A tutorial and survey
Time series analysis stands as a focal point within the data mining community, serving as a
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …
Time-llm: Time series forecasting by reprogramming large language models
Time series forecasting holds significant importance in many real-world dynamic systems
and has been extensively studied. Unlike natural language process (NLP) and computer …
and has been extensively studied. Unlike natural language process (NLP) and computer …
Large models for time series and spatio-temporal data: A survey and outlook
Temporal data, notably time series and spatio-temporal data, are prevalent in real-world
applications. They capture dynamic system measurements and are produced in vast …
applications. They capture dynamic system measurements and are produced in vast …
A survey on time-series pre-trained models
Time-Series Mining (TSM) is an important research area since it shows great potential in
practical applications. Deep learning models that rely on massive labeled data have been …
practical applications. Deep learning models that rely on massive labeled data have been …
[HTML][HTML] Data-driven stock forecasting models based on neural networks: A review
As a core branch of financial forecasting, stock forecasting plays a crucial role for financial
analysts, investors, and policymakers in managing risks and optimizing investment …
analysts, investors, and policymakers in managing risks and optimizing investment …
Generative pretrained hierarchical transformer for time series forecasting
Recent efforts have been dedicated to enhancing time series forecasting accuracy by
introducing advanced network architectures and self-supervised pretraining strategies …
introducing advanced network architectures and self-supervised pretraining strategies …
Correlation-aware spatial–temporal graph learning for multivariate time-series anomaly detection
Multivariate time-series anomaly detection is critically important in many applications,
including retail, transportation, power grid, and water treatment plants. Existing approaches …
including retail, transportation, power grid, and water treatment plants. Existing approaches …
Tsi-bench: Benchmarking time series imputation
Effective imputation is a crucial preprocessing step for time series analysis. Despite the
development of numerous deep learning algorithms for time series imputation, the …
development of numerous deep learning algorithms for time series imputation, the …
Time-moe: Billion-scale time series foundation models with mixture of experts
Deep learning for time series forecasting has seen significant advancements over the past
decades. However, despite the success of large-scale pre-training in language and vision …
decades. However, despite the success of large-scale pre-training in language and vision …