Transformers in remote sensing: A survey

AA Aleissaee, A Kumar, RM Anwer, S Khan… - Remote Sensing, 2023 - mdpi.com
Deep learning-based algorithms have seen a massive popularity in different areas of remote
sensing image analysis over the past decade. Recently, transformer-based architectures …

Low-rank and sparse representation for hyperspectral image processing: A review

J Peng, W Sun, HC Li, W Li, X Meng… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …

Enhanced autoencoders with attention-embedded degradation learning for unsupervised hyperspectral image super-resolution

L Gao, J Li, K Zheng, X Jia - IEEE Transactions on Geoscience …, 2023 - ieeexplore.ieee.org
Recently, unmixing-based networks have shown significant potential in unsupervised
multispectral-aided hyperspectral image super-resolution (MS-aided HS-SR) task …

Multispectral and hyperspectral image fusion in remote sensing: A survey

G Vivone - Information Fusion, 2023 - Elsevier
The fusion of multispectral (MS) and hyperspectral (HS) images has recently been put in the
spotlight. The combination of high spatial resolution MS images with HS data showing a …

Hypertransformer: A textural and spectral feature fusion transformer for pansharpening

WGC Bandara, VM Patel - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Pansharpening aims to fuse a registered high-resolution panchromatic image (PAN) with a
low-resolution hyperspectral image (LR-HSI) to generate an enhanced HSI with high …

Perceiving spectral variation: Unsupervised spectrum motion feature learning for hyperspectral image classification

Y Sun, B Liu, X Yu, A Yu, K Gao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In recent years, deep-learning-based hyperspectral image (HSI) classification methods have
achieved significant development. The superior capability of feature extraction from these …

ESSAformer: Efficient transformer for hyperspectral image super-resolution

M Zhang, C Zhang, Q Zhang, J Guo… - Proceedings of the …, 2023 - openaccess.thecvf.com
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-
resolution hyperspectral image from a low-resolution observation. However, the prevailing …

Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks

JF Hu, TZ Huang, LJ Deng, TX Jiang… - … on Neural Networks …, 2021 - ieeexplore.ieee.org
Hyperspectral images (HSIs) are of crucial importance in order to better understand features
from a large number of spectral channels. Restricted by its inner imaging mechanism, the …

[HTML][HTML] Hyperspectral image classification on insufficient-sample and feature learning using deep neural networks: A review

N Wambugu, Y Chen, Z **ao, K Tan, M Wei… - International Journal of …, 2021 - Elsevier
Over the years, advances in sensor technologies have enhanced spatial, temporal, spectral,
and radiometric resolutions, thus significantly improving the size, resolution, and quality of …

Hyperspectral and multispectral data fusion: A comparative review of the recent literature

N Yokoya, C Grohnfeldt… - IEEE Geoscience and …, 2017 - ieeexplore.ieee.org
In recent years, enormous efforts have been made to design image-processing algorithms to
enhance the spatial resolution of hyperspectral (HS) imagery. One of the most commonly …