Recent advances on loss functions in deep learning for computer vision

Y Tian, D Su, S Lauria, X Liu - Neurocomputing, 2022 - Elsevier
The loss function, also known as cost function, is used for training a neural network or other
machine learning models. Over the past decade, researchers have designed many loss …

Surface defect detection methods for industrial products with imbalanced samples: A review of progress in the 2020s

D Bai, G Li, D Jiang, J Yun, B Tao, G Jiang… - … Applications of Artificial …, 2024 - Elsevier
Industrial products typically lack defects in smart manufacturing systems, which leads to an
extremely imbalanced task of recognizing surface defects. With this imbalanced sample …

Towards open vocabulary learning: A survey

J Wu, X Li, S Xu, H Yuan, H Ding… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
In the field of visual scene understanding, deep neural networks have made impressive
advancements in various core tasks like segmentation, tracking, and detection. However …

Detecting twenty-thousand classes using image-level supervision

X Zhou, R Girdhar, A Joulin, P Krähenbühl… - European conference on …, 2022 - Springer
Current object detectors are limited in vocabulary size due to the small scale of detection
datasets. Image classifiers, on the other hand, reason about much larger vocabularies, as …

Learning to prompt for open-vocabulary object detection with vision-language model

Y Du, F Wei, Z Zhang, M Shi… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recently, vision-language pre-training shows great potential in open-vocabulary object
detection, where detectors trained on base classes are devised for detecting new classes …

Deep long-tailed learning: A survey

Y Zhang, B Kang, B Hooi, S Yan… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …

Simple copy-paste is a strong data augmentation method for instance segmentation

G Ghiasi, Y Cui, A Srinivas, R Qian… - Proceedings of the …, 2021 - openaccess.thecvf.com
Building instance segmentation models that are data-efficient and can handle rare object
categories is an important challenge in computer vision. Leveraging data augmentations is a …

Distribution alignment: A unified framework for long-tail visual recognition

S Zhang, Z Li, S Yan, X He… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Despite the success of the deep neural networks, it remains challenging to effectively build a
system for long-tail visual recognition tasks. To address this problem, we first investigate the …

Deep stable learning for out-of-distribution generalization

X Zhang, P Cui, R Xu, L Zhou… - Proceedings of the …, 2021 - openaccess.thecvf.com
Approaches based on deep neural networks have achieved striking performance when
testing data and training data share similar distribution, but can significantly fail otherwise …

Language-grounded indoor 3d semantic segmentation in the wild

D Rozenberszki, O Litany, A Dai - European Conference on Computer …, 2022 - Springer
Recent advances in 3D semantic segmentation with deep neural networks have shown
remarkable success, with rapid performance increase on available datasets. However …