Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
A comprehensive survey of forgetting in deep learning beyond continual learning
Forgetting refers to the loss or deterioration of previously acquired knowledge. While
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …
Conditional image-to-video generation with latent flow diffusion models
Conditional image-to-video (cI2V) generation aims to synthesize a new plausible video
starting from an image (eg, a person's face) and a condition (eg, an action class label like …
starting from an image (eg, a person's face) and a condition (eg, an action class label like …
Continual test-time domain adaptation
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …
without using any source data. Existing works mainly consider the case where the target …
Fake it till you make it: Learning transferable representations from synthetic imagenet clones
Recent image generation models such as Stable Diffusion have exhibited an impressive
ability to generate fairly realistic images starting from a simple text prompt. Could such …
ability to generate fairly realistic images starting from a simple text prompt. Could such …
SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation
Adapting to a continuously evolving environment is a safety-critical challenge inevitably
faced by all autonomous-driving systems. Existing image-and video-based driving datasets …
faced by all autonomous-driving systems. Existing image-and video-based driving datasets …
Transfer adaptation learning: A decade survey
The world we see is ever-changing and it always changes with people, things, and the
environment. Domain is referred to as the state of the world at a certain moment. A research …
environment. Domain is referred to as the state of the world at a certain moment. A research …
Map: Towards balanced generalization of iid and ood through model-agnostic adapters
Deep learning has achieved tremendous success in recent years, but most of these
successes are built on an independent and identically distributed (IID) assumption. This …
successes are built on an independent and identically distributed (IID) assumption. This …
Recent advances of continual learning in computer vision: An overview
In contrast to batch learning where all training data is available at once, continual learning
represents a family of methods that accumulate knowledge and learn continuously with data …
represents a family of methods that accumulate knowledge and learn continuously with data …
Synthetic datasets for autonomous driving: A survey
Z Song, Z He, X Li, Q Ma, R Ming, Z Mao… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Autonomous driving techniques have been flourishing in recent years while thirsting for
huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up …
huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up …