Investigating bi-level optimization for learning and vision from a unified perspective: A survey and beyond

R Liu, J Gao, J Zhang, D Meng… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Bi-Level Optimization (BLO) is originated from the area of economic game theory and then
introduced into the optimization community. BLO is able to handle problems with a …

A two-timescale stochastic algorithm framework for bilevel optimization: Complexity analysis and application to actor-critic

M Hong, HT Wai, Z Wang, Z Yang - SIAM Journal on Optimization, 2023 - SIAM
This paper analyzes a two-timescale stochastic algorithm framework for bilevel optimization.
Bilevel optimization is a class of problems which exhibits a two-level structure, and its goal is …

Averaged method of multipliers for bi-level optimization without lower-level strong convexity

R Liu, Y Liu, W Yao, S Zeng… - … Conference on Machine …, 2023 - proceedings.mlr.press
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in
learning fields. The validity of existing works heavily rely on either a restrictive Lower-Level …

Closing the gap: Tighter analysis of alternating stochastic gradient methods for bilevel problems

T Chen, Y Sun, W Yin - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Stochastic nested optimization, including stochastic compositional, min-max, and bilevel
optimization, is gaining popularity in many machine learning applications. While the three …

Bome! bilevel optimization made easy: A simple first-order approach

B Liu, M Ye, S Wright, P Stone… - Advances in neural …, 2022 - proceedings.neurips.cc
Bilevel optimization (BO) is useful for solving a variety of important machine learning
problems including but not limited to hyperparameter optimization, meta-learning, continual …

Fednest: Federated bilevel, minimax, and compositional optimization

DA Tarzanagh, M Li… - … on Machine Learning, 2022 - proceedings.mlr.press
Standard federated optimization methods successfully apply to stochastic problems with
single-level structure. However, many contemporary ML problems-including adversarial …

Provably faster algorithms for bilevel optimization

J Yang, K Ji, Y Liang - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Bilevel optimization has been widely applied in many important machine learning
applications such as hyperparameter optimization and meta-learning. Recently, several …

A fully first-order method for stochastic bilevel optimization

J Kwon, D Kwon, S Wright… - … Conference on Machine …, 2023 - proceedings.mlr.press
We consider stochastic unconstrained bilevel optimization problems when only the first-
order gradient oracles are available. While numerous optimization methods have been …

Coresets via bilevel optimization for continual learning and streaming

Z Borsos, M Mutny, A Krause - Advances in neural …, 2020 - proceedings.neurips.cc
Coresets are small data summaries that are sufficient for model training. They can be
maintained online, enabling efficient handling of large data streams under resource …

A near-optimal algorithm for stochastic bilevel optimization via double-momentum

P Khanduri, S Zeng, M Hong, HT Wai… - Advances in neural …, 2021 - proceedings.neurips.cc
This paper proposes a new algorithm--the\underline {S} ingle-timescale Do\underline {u} ble-
momentum\underline {St} ochastic\underline {A} pprox\underline {i} matio\underline …