Fourmer: An efficient global modeling paradigm for image restoration

M Zhou, J Huang, CL Guo, C Li - … conference on machine …, 2023 - proceedings.mlr.press
Global modeling-based image restoration frameworks have become popular. However, they
often require a high memory footprint and do not consider task-specific degradation. Our …

Target oriented perceptual adversarial fusion network for underwater image enhancement

Z Jiang, Z Li, S Yang, X Fan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Due to the refraction and absorption of light by water, underwater images usually suffer from
severe degradation, such as color cast, hazy blur, and low visibility, which would degrade …

Investigating bi-level optimization for learning and vision from a unified perspective: A survey and beyond

R Liu, J Gao, J Zhang, D Meng… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Bi-Level Optimization (BLO) is originated from the area of economic game theory and then
introduced into the optimization community. BLO is able to handle problems with a …

A two-timescale stochastic algorithm framework for bilevel optimization: Complexity analysis and application to actor-critic

M Hong, HT Wai, Z Wang, Z Yang - SIAM Journal on Optimization, 2023 - SIAM
This paper analyzes a two-timescale stochastic algorithm framework for bilevel optimization.
Bilevel optimization is a class of problems which exhibits a two-level structure, and its goal is …

Averaged method of multipliers for bi-level optimization without lower-level strong convexity

R Liu, Y Liu, W Yao, S Zeng… - … Conference on Machine …, 2023 - proceedings.mlr.press
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in
learning fields. The validity of existing works heavily rely on either a restrictive Lower-Level …

Bilevel fast scene adaptation for low-light image enhancement

L Ma, D **, N An, J Liu, X Fan, Z Luo, R Liu - International Journal of …, 2023 - Springer
Enhancing images in low-light scenes is a challenging but widely concerned task in the
computer vision. The mainstream learning-based methods mainly acquire the enhanced …

Bilevel optimization: Convergence analysis and enhanced design

K Ji, J Yang, Y Liang - International conference on machine …, 2021 - proceedings.mlr.press
Bilevel optimization has arisen as a powerful tool for many machine learning problems such
as meta-learning, hyperparameter optimization, and reinforcement learning. In this paper …

Closing the gap: Tighter analysis of alternating stochastic gradient methods for bilevel problems

T Chen, Y Sun, W Yin - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Stochastic nested optimization, including stochastic compositional, min-max, and bilevel
optimization, is gaining popularity in many machine learning applications. While the three …

Bome! bilevel optimization made easy: A simple first-order approach

B Liu, M Ye, S Wright, P Stone… - Advances in neural …, 2022 - proceedings.neurips.cc
Bilevel optimization (BO) is useful for solving a variety of important machine learning
problems including but not limited to hyperparameter optimization, meta-learning, continual …

Fednest: Federated bilevel, minimax, and compositional optimization

DA Tarzanagh, M Li… - … on Machine Learning, 2022 - proceedings.mlr.press
Standard federated optimization methods successfully apply to stochastic problems with
single-level structure. However, many contemporary ML problems-including adversarial …