Design of functional and sustainable polymers assisted by artificial intelligence

H Tran, R Gurnani, C Kim, G Pilania, HK Kwon… - Nature Reviews …, 2024 - nature.com
Artificial intelligence (AI)-based methods continue to make inroads into accelerated
materials design and development. Here, we review AI-enabled advances made in the …

Emerging materials intelligence ecosystems propelled by machine learning

R Batra, L Song, R Ramprasad - Nature Reviews Materials, 2021 - nature.com
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …

Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning

CS Ha, D Yao, Z Xu, C Liu, H Liu, D Elkins… - Nature …, 2023 - nature.com
Designing and printing metamaterials with customizable architectures enables the
realization of unprecedented mechanical behaviors that transcend those of their constituent …

Polymer informatics: Current status and critical next steps

L Chen, G Pilania, R Batra, TD Huan, C Kim… - Materials Science and …, 2021 - Elsevier
Artificial intelligence (AI) based approaches are beginning to impact several domains of
human life, science and technology. Polymer informatics is one such domain where AI and …

A graph representation of molecular ensembles for polymer property prediction

M Aldeghi, CW Coley - Chemical Science, 2022 - pubs.rsc.org
Synthetic polymers are versatile and widely used materials. Similar to small organic
molecules, a large chemical space of such materials is hypothetically accessible …

Machine-learning predictions of polymer properties with Polymer Genome

H Doan Tran, C Kim, L Chen… - Journal of Applied …, 2020 - pubs.aip.org
Polymer Genome is a web-based machine-learning capability to perform near-
instantaneous predictions of a variety of polymer properties. The prediction models are …

Benchmarking machine learning models for polymer informatics: an example of glass transition temperature

L Tao, V Varshney, Y Li - Journal of Chemical Information and …, 2021 - ACS Publications
In the field of polymer informatics, utilizing machine learning (ML) techniques to evaluate the
glass transition temperature T g and other properties of polymers has attracted extensive …

polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics

C Kuenneth, R Ramprasad - Nature Communications, 2023 - nature.com
Polymers are a vital part of everyday life. Their chemical universe is so large that it presents
unprecedented opportunities as well as significant challenges to identify suitable application …

Emerging trends in machine learning: a polymer perspective

TB Martin, DJ Audus - ACS Polymers Au, 2023 - ACS Publications
In the last five years, there has been tremendous growth in machine learning and artificial
intelligence as applied to polymer science. Here, we highlight the unique challenges …

Machine Learning for Predicting the Band Gaps of ABX3 Perovskites from Elemental Properties

V Gladkikh, DY Kim, A Hajibabaei, A Jana… - The Journal of …, 2020 - ACS Publications
The band gap is an important parameter that determines light-harvesting capability of
perovskite materials. It governs the performance of various optoelectronic devices such as …