Progress in 3D bioprinting technology for tissue/organ regenerative engineering

I Matai, G Kaur, A Seyedsalehi, A McClinton… - Biomaterials, 2020 - Elsevier
Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of
the need for alternatives to allograft tissues. Within the last three decades, research efforts in …

[HTML][HTML] 3D printing of hydrogels: Rational design strategies and emerging biomedical applications

J Li, C Wu, PK Chu, M Gelinsky - Materials Science and Engineering: R …, 2020 - Elsevier
Abstract 3D printing alias additive manufacturing can transform 3D virtual models created by
computer-aided design (CAD) into physical 3D objects in a layer-by-layer manner …

Bioinks for 3D bioprinting: an overview

PS Gungor-Ozkerim, I Inci, YS Zhang… - Biomaterials …, 2018 - pubs.rsc.org
Bioprinting is an emerging technology with various applications in making functional tissue
constructs to replace injured or diseased tissues. It is a relatively new approach that …

[HTML][HTML] 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances

S Derakhshanfar, R Mbeleck, K Xu, X Zhang, W Zhong… - Bioactive materials, 2018 - Elsevier
Abstract 3D printing, an additive manufacturing based technology for precise 3D
construction, is currently widely employed to enhance applicability and function of cell laden …

Protein-based biological materials: Molecular design and artificial production

A Miserez, J Yu, P Mohammadi - Chemical Reviews, 2023 - ACS Publications
Polymeric materials produced from fossil fuels have been intimately linked to the
development of industrial activities in the 20th century and, consequently, to the …

A definition of bioinks and their distinction from biomaterial inks

J Groll, JA Burdick, DW Cho, B Derby, M Gelinsky… - …, 2018 - iopscience.iop.org
Biofabrication aims to fabricate biologically functional products through bioprinting or
bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are …

Current development of biodegradable polymeric materials for biomedical applications

R Song, M Murphy, C Li, K Ting, C Soo… - Drug design …, 2018 - Taylor & Francis
In the last half-century, the development of biodegradable polymeric materials for
biomedical applications has advanced significantly. Biodegradable polymeric materials are …

Biofabrication strategies for 3D in vitro models and regenerative medicine

L Moroni, JA Burdick, C Highley, SJ Lee… - Nature Reviews …, 2018 - nature.com
Organs are complex systems composed of different cells, proteins and signalling molecules
that are arranged in a highly ordered structure to orchestrate a myriad of functions in our …

From shape to function: the next step in bioprinting

R Levato, T Jungst, RG Scheuring, T Blunk… - Advanced …, 2020 - Wiley Online Library
Abstract In 2013, the “biofabrication window” was introduced to reflect the processing
challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable …

Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review

A Fatimi, OV Okoro, D Podstawczyk, J Siminska-Stanny… - Gels, 2022 - mdpi.com
Three-dimensional (3D) printing is well acknowledged to constitute an important technology
in tissue engineering, largely due to the increasing global demand for organ replacement …