Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Data‐driven materials science: status, challenges, and perspectives

L Himanen, A Geurts, AS Foster, P Rinke - Advanced Science, 2019 - Wiley Online Library
Data‐driven science is heralded as a new paradigm in materials science. In this field, data is
the new resource, and knowledge is extracted from materials datasets that are too big or …

Retrospective on a decade of machine learning for chemical discovery

OA von Lilienfeld, K Burke - Nature communications, 2020 - nature.com
Standfirst Over the last decade, we have witnessed the emergence of ever more machine
learning applications in all aspects of the chemical sciences. Here, we highlight specific …

Colloquium: Machine learning in nuclear physics

A Boehnlein, M Diefenthaler, N Sato, M Schram… - Reviews of modern …, 2022 - APS
Advances in machine learning methods provide tools that have broad applicability in
scientific research. These techniques are being applied across the diversity of nuclear …

Big-data science in porous materials: materials genomics and machine learning

KM Jablonka, D Ongari, SM Moosavi, B Smit - Chemical reviews, 2020 - ACS Publications
By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …

Quantum chemistry in the age of machine learning

PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

KT Schütt, M Gastegger, A Tkatchenko… - Nature …, 2019 - nature.com
Abstract Machine learning advances chemistry and materials science by enabling large-
scale exploration of chemical space based on quantum chemical calculations. While these …