Machine learning-enabled retrobiosynthesis of molecules

T Yu, AG Boob, MJ Volk, X Liu, H Cui, H Zhao - Nature Catalysis, 2023 - nature.com
Retrobiosynthesis provides an effective and sustainable approach to producing functional
molecules. The past few decades have witnessed a rapid expansion of biosynthetic …

Opportunities and challenges for machine learning-assisted enzyme engineering

J Yang, FZ Li, FH Arnold - ACS Central Science, 2024 - ACS Publications
Enzymes can be engineered at the level of their amino acid sequences to optimize key
properties such as expression, stability, substrate range, and catalytic efficiency─ or even to …

Learning inverse folding from millions of predicted structures

C Hsu, R Verkuil, J Liu, Z Lin, B Hie… - International …, 2022 - proceedings.mlr.press
We consider the problem of predicting a protein sequence from its backbone atom
coordinates. Machine learning approaches to this problem to date have been limited by the …

Scaffolding protein functional sites using deep learning

J Wang, S Lisanza, D Juergens, D Tischer, JL Watson… - Science, 2022 - science.org
The binding and catalytic functions of proteins are generally mediated by a small number of
functional residues held in place by the overall protein structure. Here, we describe deep …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Protein generation with evolutionary diffusion: sequence is all you need

S Alamdari, N Thakkar, R van den Berg, N Tenenholtz… - BioRxiv, 2023 - biorxiv.org
Deep generative models are increasingly powerful tools for the in silico design of novel
proteins. Recently, a family of generative models called diffusion models has demonstrated …

Regression transformer enables concurrent sequence regression and generation for molecular language modelling

J Born, M Manica - Nature Machine Intelligence, 2023 - nature.com
Despite tremendous progress of generative models in the natural sciences, their
controllability remains challenging. One fundamentally missing aspect of molecular or …

Machine learning to navigate fitness landscapes for protein engineering

CR Freschlin, SA Fahlberg, PA Romero - Current opinion in biotechnology, 2022 - Elsevier
Machine learning (ML) is revolutionizing our ability to understand and predict the complex
relationships between protein sequence, structure, and function. Predictive sequence …

[HTML][HTML] Deep generative modeling for protein design

A Strokach, PM Kim - Current opinion in structural biology, 2022 - Elsevier
Deep learning approaches have produced substantial breakthroughs in fields such as
image classification and natural language processing and are making rapid inroads in the …

In silico proof of principle of machine learning-based antibody design at unconstrained scale

R Akbar, PA Robert, CR Weber, M Widrich, R Frank… - MAbs, 2022 - Taylor & Francis
Generative machine learning (ML) has been postulated to become a major driver in the
computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to …