Understanding of machine learning with deep learning: architectures, workflow, applications and future directions
MM Taye - Computers, 2023 - mdpi.com
In recent years, deep learning (DL) has been the most popular computational approach in
the field of machine learning (ML), achieving exceptional results on a variety of complex …
the field of machine learning (ML), achieving exceptional results on a variety of complex …
Deep reinforcement learning in smart manufacturing: A review and prospects
To facilitate the personalized smart manufacturing paradigm with cognitive automation
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …
Guiding pretraining in reinforcement learning with large language models
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …
reward function. Intrinsically motivated exploration methods address this limitation by …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Efficient online reinforcement learning with offline data
Sample efficiency and exploration remain major challenges in online reinforcement learning
(RL). A powerful approach that can be applied to address these issues is the inclusion of …
(RL). A powerful approach that can be applied to address these issues is the inclusion of …
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Bigger, better, faster: Human-level atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …
Uncertainty-based offline reinforcement learning with diversified q-ensemble
Offline reinforcement learning (offline RL), which aims to find an optimal policy from a
previously collected static dataset, bears algorithmic difficulties due to function …
previously collected static dataset, bears algorithmic difficulties due to function …
A comprehensive survey: Evaluating the efficiency of artificial intelligence and machine learning techniques on cyber security solutions
Given the continually rising frequency of cyberattacks, the adoption of artificial intelligence
methods, particularly Machine Learning (ML), Deep Learning (DL), and Reinforcement …
methods, particularly Machine Learning (ML), Deep Learning (DL), and Reinforcement …
Reinforcement learning based recommender systems: A survey
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …
help us find our favorite items to purchase, our friends on social networks, and our favorite …