Dissociating language and thought in large language models

K Mahowald, AA Ivanova, IA Blank, N Kanwisher… - Trends in Cognitive …, 2024 - cell.com
Large language models (LLMs) have come closest among all models to date to mastering
human language, yet opinions about their linguistic and cognitive capabilities remain split …

Recent advances in natural language processing via large pre-trained language models: A survey

B Min, H Ross, E Sulem, APB Veyseh… - ACM Computing …, 2023 - dl.acm.org
Large, pre-trained language models (PLMs) such as BERT and GPT have drastically
changed the Natural Language Processing (NLP) field. For numerous NLP tasks …

Inference-time intervention: Eliciting truthful answers from a language model

K Li, O Patel, F Viégas, H Pfister… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract We introduce Inference-Time Intervention (ITI), a technique designed to enhance
the" truthfulness" of large language models (LLMs). ITI operates by shifting model activations …

[HTML][HTML] Modern language models refute Chomsky's approach to language

ST Piantadosi - From fieldwork to linguistic theory: A tribute to …, 2023 - books.google.com
Modern machine learning has subverted and bypassed the theoretical framework of
Chomsky's generative approach to linguistics, including its core claims to particular insights …

Explainability for large language models: A survey

H Zhao, H Chen, F Yang, N Liu, H Deng, H Cai… - ACM Transactions on …, 2024 - dl.acm.org
Large language models (LLMs) have demonstrated impressive capabilities in natural
language processing. However, their internal mechanisms are still unclear and this lack of …

How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model

M Hanna, O Liu, A Variengien - Advances in Neural …, 2023 - proceedings.neurips.cc
Pre-trained language models can be surprisingly adept at tasks they were not explicitly
trained on, but how they implement these capabilities is poorly understood. In this paper, we …

Zeroquant: Efficient and affordable post-training quantization for large-scale transformers

Z Yao, R Yazdani Aminabadi… - Advances in …, 2022 - proceedings.neurips.cc
How to efficiently serve ever-larger trained natural language models in practice has become
exceptionally challenging even for powerful cloud servers due to their prohibitive …

Socratic models: Composing zero-shot multimodal reasoning with language

A Zeng, M Attarian, B Ichter, K Choromanski… - arxiv preprint arxiv …, 2022 - arxiv.org
Large pretrained (eg," foundation") models exhibit distinct capabilities depending on the
domain of data they are trained on. While these domains are generic, they may only barely …

Leace: Perfect linear concept erasure in closed form

N Belrose, D Schneider-Joseph… - Advances in …, 2023 - proceedings.neurips.cc
Abstract Concept erasure aims to remove specified features from a representation. It can
improve fairness (eg preventing a classifier from using gender or race) and interpretability …

Design guidelines for prompt engineering text-to-image generative models

V Liu, LB Chilton - Proceedings of the 2022 CHI conference on human …, 2022 - dl.acm.org
Text-to-image generative models are a new and powerful way to generate visual artwork.
However, the open-ended nature of text as interaction is double-edged; while users can …