From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing
Electrode processing plays an important role in advancing lithium-ion battery technologies
and has a significant impact on cell energy density, manufacturing cost, and throughput …
and has a significant impact on cell energy density, manufacturing cost, and throughput …
Fast charging of lithium‐ion batteries: a review of materials aspects
Fast charging is considered to be a key requirement for widespread economic success of
electric vehicles. Current lithium‐ion batteries (LIBs) offer high energy density enabling …
electric vehicles. Current lithium‐ion batteries (LIBs) offer high energy density enabling …
Compositionally complex do** for zero-strain zero-cobalt layered cathodes
The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have
made the elimination of Co a pressing need for the automotive industry. Owing to their high …
made the elimination of Co a pressing need for the automotive industry. Owing to their high …
Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-do** strategy
X Ou, T Liu, W Zhong, X Fan, X Guo, X Huang… - Nature …, 2022 - nature.com
High-capacity Ni-rich layered oxides are promising cathode materials for secondary lithium-
based battery systems. However, their structural instability detrimentally affects the battery …
based battery systems. However, their structural instability detrimentally affects the battery …
Challenges and strategies towards single‐crystalline Ni‐rich layered cathodes
The ever‐increasing energy density requirements in electric vehicles (EVs) have boosted
the development of Ni‐rich layered oxide cathodes for state‐of‐the‐art lithium‐ion batteries …
the development of Ni‐rich layered oxide cathodes for state‐of‐the‐art lithium‐ion batteries …
Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte
By increasing the charging voltage, a cell specific energy of> 400 W h kg− 1 is achievable
with LiNi0. 8Mn0. 1Co0. 1O2 in Li metal batteries. However, stable cycling of high-nickel …
with LiNi0. 8Mn0. 1Co0. 1O2 in Li metal batteries. However, stable cycling of high-nickel …
Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation
Layered lithium transition metal oxides derived from LiMO2 (M= Co, Ni, Mn, etc.) have been
widely adopted as the cathodes of Li-ion batteries for portable electronics, electric vehicles …
widely adopted as the cathodes of Li-ion batteries for portable electronics, electric vehicles …
In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes
High nickel content in LiNixCoyMnzO2 (NCM, x≥ 0.8, x+ y+ z= 1) layered cathode material
allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM …
allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM …
Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries
Engineered polycrystalline electrodes are critical to the cycling stability and safety of lithium-
ion batteries, yet it is challenging to construct high-quality coatings at both the primary-and …
ion batteries, yet it is challenging to construct high-quality coatings at both the primary-and …
Dynamics of particle network in composite battery cathodes
Improving composite battery electrodes requires a delicate control of active materials and
electrode formulation. The electrochemically active particles fulfill their role as energy …
electrode formulation. The electrochemically active particles fulfill their role as energy …