Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries
J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
Sulfur reduction reaction in lithium–sulfur batteries: Mechanisms, catalysts, and characterization
Lithium–sulfur batteries are one of the most promising alternatives for advanced battery
systems due to the merits of extraordinary theoretical specific energy density, abundant …
systems due to the merits of extraordinary theoretical specific energy density, abundant …
Advances in high sulfur loading cathodes for practical lithium‐sulfur batteries
Lithium‐sulfur batteries hold great potential for next‐generation energy storage systems,
due to their high theoretical energy density and the natural abundance of sulfur. Although …
due to their high theoretical energy density and the natural abundance of sulfur. Although …
Emerging catalysts to promote kinetics of lithium–sulfur batteries
P Wang, B **, M Huang, W Chen… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with a high theoretical capacity of 1675 mAh g− 1 hold
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …
Lithium–sulfur battery cathode design: tailoring metal‐based nanostructures for robust polysulfide adsorption and catalytic conversion
Abstract Lithium–sulfur (Li‐S) batteries have a high specific energy capacity and density of
1675 mAh g− 1 and 2670 Wh kg− 1, respectively, rendering them among the most promising …
1675 mAh g− 1 and 2670 Wh kg− 1, respectively, rendering them among the most promising …
Selective catalysis remedies polysulfide shuttling in lithium‐sulfur batteries
W Hua, H Li, C Pei, J **a, Y Sun, C Zhang… - Advanced …, 2021 - Wiley Online Library
The shuttling of soluble lithium polysulfides between the electrodes leads to serious capacity
fading and excess use of electrolyte, which severely bottlenecks practical use of Li‐S …
fading and excess use of electrolyte, which severely bottlenecks practical use of Li‐S …
Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities
The development of energy‐storage devices has received increasing attention as a
transformative technology to realize a low‐carbon economy and sustainable energy supply …
transformative technology to realize a low‐carbon economy and sustainable energy supply …
Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries
Defective materials have been demonstrated to possess adsorptive and catalytic properties
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …
Engineering cooperative catalysis in Li–S batteries
J Qin, R Wang, P **ao, D Wang - Advanced Energy Materials, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded to be one of the most promising next‐
generation batteries owing to the merits of high theoretical capacity and low cost. However …
generation batteries owing to the merits of high theoretical capacity and low cost. However …
Dilute alloying to implant activation centers in nitride electrocatalysts for lithium–sulfur batteries
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely
leveraged in complex reactions beyond small molecule conversion. In this work, dilute …
leveraged in complex reactions beyond small molecule conversion. In this work, dilute …