Image fusion meets deep learning: A survey and perspective
Image fusion, which refers to extracting and then combining the most meaningful information
from different source images, aims to generate a single image that is more informative and …
from different source images, aims to generate a single image that is more informative and …
Current advances and future perspectives of image fusion: A comprehensive review
Multiple imaging modalities can be combined to provide more information about the real
world than a single modality alone. Infrared images discriminate targets with respect to their …
world than a single modality alone. Infrared images discriminate targets with respect to their …
Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion
Multi-modality (MM) image fusion aims to render fused images that maintain the merits of
different modalities, eg, functional highlight and detailed textures. To tackle the challenge in …
different modalities, eg, functional highlight and detailed textures. To tackle the challenge in …
SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer
This study proposes a novel general image fusion framework based on cross-domain long-
range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention …
range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention …
SuperFusion: A versatile image registration and fusion network with semantic awareness
Image fusion aims to integrate complementary information in source images to synthesize a
fused image comprehensively characterizing the imaging scene. However, existing image …
fused image comprehensively characterizing the imaging scene. However, existing image …
Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection
This study addresses the issue of fusing infrared and visible images that appear differently
for object detection. Aiming at generating an image of high visual quality, previous …
for object detection. Aiming at generating an image of high visual quality, previous …
Multi-interactive feature learning and a full-time multi-modality benchmark for image fusion and segmentation
Multi-modality image fusion and segmentation play a vital role in autonomous driving and
robotic operation. Early efforts focus on boosting the performance for only one task, eg …
robotic operation. Early efforts focus on boosting the performance for only one task, eg …
PIAFusion: A progressive infrared and visible image fusion network based on illumination aware
Infrared and visible image fusion aims to synthesize a single fused image containing salient
targets and abundant texture details even under extreme illumination conditions. However …
targets and abundant texture details even under extreme illumination conditions. However …
Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
Infrared and visible image fusion aims to synthesize a single fused image that not only
contains salient targets and abundant texture details but also facilitates high-level vision …
contains salient targets and abundant texture details but also facilitates high-level vision …
DDFM: denoising diffusion model for multi-modality image fusion
Multi-modality image fusion aims to combine different modalities to produce fused images
that retain the complementary features of each modality, such as functional highlights and …
that retain the complementary features of each modality, such as functional highlights and …