Lithium batteries and the solid electrolyte interphase (SEI)—progress and outlook

H Adenusi, GA Chass, S Passerini… - Advanced Energy …, 2023 - Wiley Online Library
Interfacial dynamics within chemical systems such as electron and ion transport processes
have relevance in the rational optimization of electrochemical energy storage materials and …

A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries

B Li, Y Chao, M Li, Y **ao, R Li, K Yang, X Cui… - Electrochemical Energy …, 2023 - Springer
Lithium-metal batteries with high energy/power densities have significant applications in
electronics, electric vehicles, and stationary power plants. However, the unstable lithium …

High-voltage liquid electrolytes for Li batteries: progress and perspectives

X Fan, C Wang - Chemical Society Reviews, 2021 - pubs.rsc.org
Since the advent of the Li ion batteries (LIBs), the energy density has been tripled, mainly
attributed to the increase of the electrode capacities. Now, the capacity of transition metal …

Fast charging of lithium‐ion batteries: a review of materials aspects

M Weiss, R Ruess, J Kasnatscheew… - Advanced Energy …, 2021 - Wiley Online Library
Fast charging is considered to be a key requirement for widespread economic success of
electric vehicles. Current lithium‐ion batteries (LIBs) offer high energy density enabling …

SEI: past, present and future

E Peled, S Menkin - Journal of The Electrochemical Society, 2017 - iopscience.iop.org
Abstract The Solid-Electrolyte-Interphase (SEI) model for non-aqueous alkali-metal batteries
constitutes a paradigm change in the understanding of lithium batteries and has thus …

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

J Zheng, MH Engelhard, D Mei, S Jiao, BJ Polzin… - Nature Energy, 2017 - nature.com
Batteries using lithium (Li) metal as anodes are considered promising energy storage
systems because of their high energy densities. However, safety concerns associated with …

Additive‐Assisted Hydrophobic Li+‐Solvated Structure for Stabilizing Dual Electrode Electrolyte Interphases through Suppressing LiPF6 Hydrolysis

F Li, J Liu, J He, Y Hou, H Wang, D Wu… - Angewandte Chemie …, 2022 - Wiley Online Library
Lithium‐metal batteries have attracted much attention due to their high energy density.
However, the hydrolysis of LiPF6 leads to uncontrollable Li dendrites growth and fast …

Electrode–electrolyte interfaces in lithium-based batteries

X Yu, A Manthiram - Energy & environmental science, 2018 - pubs.rsc.org
The electrode–electrolyte interface has been a critical concern since the birth of lithium (Li)-
based batteries (lithium or Li+-ion batteries) that are operated with liquid electrolytes and in …

The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling

SJ An, J Li, C Daniel, D Mohanty, S Nagpure… - Carbon, 2016 - Elsevier
An in-depth historical and current review is presented on the science of lithium-ion battery
(LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure …

A review of solid electrolyte interphases on lithium metal anode

XB Cheng, R Zhang, CZ Zhao, F Wei… - Advanced …, 2016 - Wiley Online Library
Lithium metal batteries (LMBs) are among the most promising candidates of high‐energy‐
density devices for advanced energy storage. However, the growth of dendrites greatly …