Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A review on fairness in machine learning
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …
neural network architecture is capable of processing graph structured data and bridges the …
Holistic evaluation of language models
Language models (LMs) are becoming the foundation for almost all major language
technologies, but their capabilities, limitations, and risks are not well understood. We present …
technologies, but their capabilities, limitations, and risks are not well understood. We present …
A survey on the fairness of recommender systems
Recommender systems are an essential tool to relieve the information overload challenge
and play an important role in people's daily lives. Since recommendations involve …
and play an important role in people's daily lives. Since recommendations involve …
Bias and debias in recommender system: A survey and future directions
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …
system (RS), most of the papers focus on inventing machine learning models to better fit …
Algorithmic content moderation: Technical and political challenges in the automation of platform governance
As government pressure on major technology companies builds, both firms and legislators
are searching for technical solutions to difficult platform governance puzzles such as hate …
are searching for technical solutions to difficult platform governance puzzles such as hate …
Fairness in recommendation: Foundations, methods, and applications
As one of the most pervasive applications of machine learning, recommender systems are
playing an important role on assisting human decision-making. The satisfaction of users and …
playing an important role on assisting human decision-making. The satisfaction of users and …
Mitigating bias in algorithmic hiring: Evaluating claims and practices
There has been rapidly growing interest in the use of algorithms in hiring, especially as a
means to address or mitigate bias. Yet, to date, little is known about how these methods are …
means to address or mitigate bias. Yet, to date, little is known about how these methods are …
Fairness in ranking, part i: Score-based ranking
In the past few years, there has been much work on incorporating fairness requirements into
algorithmic rankers, with contributions coming from the data management, algorithms …
algorithmic rankers, with contributions coming from the data management, algorithms …
Fairness in rankings and recommendations: an overview
We increasingly depend on a variety of data-driven algorithmic systems to assist us in many
aspects of life. Search engines and recommender systems among others are used as …
aspects of life. Search engines and recommender systems among others are used as …