Riesz transform and spectral multipliers for the flow Laplacian on nonhomogeneous trees

A Martini, F Santagati, A Tabacco… - arxiv preprint arxiv …, 2023 - arxiv.org
Let $ T $ be a locally finite tree equipped with a flow measure $ m $. Let $\mathcal L $ be the
flow Laplacian on $(T, m) $. We prove that the first order Riesz transform $\nabla\mathcal L …

Analysis on trees with nondoubling flow measures

M Levi, F Santagati, A Tabacco, M Vallarino - Potential Analysis, 2021 - Springer
We consider trees with root at infinity endowed with flow measures, which are nondoubling
measures of at least exponential growth and which do not satisfy the isoperimetric …

A sharp multiplier theorem for solvable extensions of Heisenberg and related groups

A Martini, P Plewa - Annali di Matematica Pura ed Applicata (1923-), 2024 - Springer
Let G be the semidirect product N⋊ R, where N is a stratified Lie group and R acts on N via
automorphic dilations. Homogeneous left-invariant sub-Laplacians on N and R can be lifted …

Riesz Transforms on Groups

A Martini - The Journal of Geometric Analysis, 2023 - Springer
We prove the L p-boundedness for all p∈(1,∞) of the first-order Riesz transforms X j L-1/2
associated with the Laplacian L=-∑ j= 0 n X j 2 on the ax+ b group G= R n⋊ R; here X 0 and …

-boundedness of Riesz transforms on solvable extensions of Carnot groups

A Martini, P Plewa - arxiv preprint arxiv:2409.13233, 2024 - arxiv.org
Let $ G= N\rtimes\mathbb {R} $, where $ N $ is a Carnot group and $\mathbb {R} $ acts on $
N $ via automorphic dilations. Homogeneous left-invariant sub-Laplacians on $ N $ and …

Calderón–Zygmund theory on some Lie groups of exponential growth

F De Mari, M Levi, M Monti… - Mathematische …, 2025 - Wiley Online Library
Abstract Let G= N⋊ AG=N\rtimesA, where NN is a stratified Lie group and A= R+ A=R_+ acts
on NN via automorphic dilations. We prove that the group GG has the Calderón–Zygmund …

BMO spaces on weighted homogeneous trees

L Arditti, A Tabacco, M Vallarino - The Journal of Geometric Analysis, 2021 - Springer
We consider an infinite homogeneous tree VV endowed with the usual metric d defined on
graphs and a weighted measure μ μ. The metric measure space (V, d, μ)(V, d, μ) is …

Hardy spaces on weighted homogeneous trees

L Arditti, A Tabacco, M Vallarino - Advances in microlocal and time …, 2020 - Springer
We consider an infinite homogeneous tree V\mathcal V endowed with the usual metric d
defined on graphs and a weighted measure μ. The metric measure space (V, d, μ)(\mathcal …

Singular integrals on hypergroups and an operator-valued spectral multiplier theorem

A Martini, P Plewa - arxiv preprint arxiv:2409.12833, 2024 - arxiv.org
Let $ L_\nu=-\partial_x^ 2-(\nu-1) x^{-1}\partial_x $ be the Bessel operator on the half-line $
X_\nu=[0,\infty) $ with measure $ x^{\nu-1}\,\mathrm {d} x $. In this work we study singular …

Riesz transforms on solvable extensions of stratified groups

A Martini, M Vallarino - arxiv preprint arxiv:1804.04510, 2018 - arxiv.org
Let $ G= N\rtimes A $, where $ N $ is a stratified group and $ A=\mathbb {R} $ acts on $ N $
via automorphic dilations. Homogeneous sub-Laplacians on $ N $ and $ A $ can be lifted to …