Generative models as an emerging paradigm in the chemical sciences
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …
compute properties for a vast number of candidates, eg, by discriminative modeling …
Geometric deep learning on molecular representations
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …
and process symmetry information. GDL bears promise for molecular modelling applications …
Geometric latent diffusion models for 3d molecule generation
Generative models, especially diffusion models (DMs), have achieved promising results for
generating feature-rich geometries and advancing foundational science problems such as …
generating feature-rich geometries and advancing foundational science problems such as …
Geodiff: A geometric diffusion model for molecular conformation generation
Predicting molecular conformations from molecular graphs is a fundamental problem in
cheminformatics and drug discovery. Recently, significant progress has been achieved with …
cheminformatics and drug discovery. Recently, significant progress has been achieved with …
Equivariant 3D-conditional diffusion model for molecular linker design
Fragment-based drug discovery has been an effective paradigm in early-stage drug
development. An open challenge in this area is designing linkers between disconnected …
development. An open challenge in this area is designing linkers between disconnected …
Equivariant flow matching
Normalizing flows are a class of deep generative models that are especially interesting for
modeling probability distributions in physics, where the exact likelihood of flows allows …
modeling probability distributions in physics, where the exact likelihood of flows allows …
Periodic graph transformers for crystal material property prediction
We consider representation learning on periodic graphs encoding crystal materials. Different
from regular graphs, periodic graphs consist of a minimum unit cell repeating itself on a …
from regular graphs, periodic graphs consist of a minimum unit cell repeating itself on a …
Diffusion-based molecule generation with informative prior bridges
AI-based molecule generation provides a promising approach to a large area of biomedical
sciences and engineering, such as antibody design, hydrolase engineering, or vaccine …
sciences and engineering, such as antibody design, hydrolase engineering, or vaccine …
Inverse design of 3d molecular structures with conditional generative neural networks
The rational design of molecules with desired properties is a long-standing challenge in
chemistry. Generative neural networks have emerged as a powerful approach to sample …
chemistry. Generative neural networks have emerged as a powerful approach to sample …
Crystal diffusion variational autoencoder for periodic material generation
Generating the periodic structure of stable materials is a long-standing challenge for the
material design community. This task is difficult because stable materials only exist in a low …
material design community. This task is difficult because stable materials only exist in a low …