Speech recognition using deep neural networks: A systematic review

AB Nassif, I Shahin, I Attili, M Azzeh, K Shaalan - IEEE access, 2019 - ieeexplore.ieee.org
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …

Deep convolutional neural networks for image classification: A comprehensive review

W Rawat, Z Wang - Neural computation, 2017 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) have been applied to visual tasks since the late
1980s. However, despite a few scattered applications, they were dormant until the mid …

Adan: Adaptive nesterov momentum algorithm for faster optimizing deep models

X **e, P Zhou, H Li, Z Lin, S Yan - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
In deep learning, different kinds of deep networks typically need different optimizers, which
have to be chosen after multiple trials, making the training process inefficient. To relieve this …

Branchformer: Parallel mlp-attention architectures to capture local and global context for speech recognition and understanding

Y Peng, S Dalmia, I Lane… - … Conference on Machine …, 2022 - proceedings.mlr.press
Conformer has proven to be effective in many speech processing tasks. It combines the
benefits of extracting local dependencies using convolutions and global dependencies …

Deep learning for audio signal processing

H Purwins, B Li, T Virtanen, J Schlüter… - IEEE Journal of …, 2019 - ieeexplore.ieee.org
Given the recent surge in developments of deep learning, this paper provides a review of the
state-of-the-art deep learning techniques for audio signal processing. Speech, music, and …

Conceptual understanding of convolutional neural network-a deep learning approach

S Indolia, AK Goswami, SP Mishra, P Asopa - Procedia computer science, 2018 - Elsevier
Deep learning has become an area of interest to the researchers in the past few years.
Convolutional Neural Network (CNN) is a deep learning approach that is widely used for …

A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox

L **g, M Zhao, P Li, X Xu - Measurement, 2017 - Elsevier
Feature extraction plays a vital role in intelligent fault diagnosis of mechanical system.
Nevertheless, traditional feature extraction methods suffer from three problems, which are …

Recommendation system based on deep learning methods: a systematic review and new directions

A Da'u, N Salim - Artificial Intelligence Review, 2020 - Springer
These days, many recommender systems (RS) are utilized for solving information overload
problem in areas such as e-commerce, entertainment, and social media. Although classical …

Recent advances in convolutional neural networks

J Gu, Z Wang, J Kuen, L Ma, A Shahroudy, B Shuai… - Pattern recognition, 2018 - Elsevier
In the last few years, deep learning has led to very good performance on a variety of
problems, such as visual recognition, speech recognition and natural language processing …

Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis

X Guo, L Chen, C Shen - Measurement, 2016 - Elsevier
Traditional artificial methods and intelligence-based methods of classifying and diagnosing
various mechanical faults with high accuracy by extracting effective features from vibration …