A brief survey on semantic segmentation with deep learning
S Hao, Y Zhou, Y Guo - Neurocomputing, 2020 - Elsevier
Semantic segmentation is a challenging task in computer vision. In recent years, the
performance of semantic segmentation has been greatly improved by using deep learning …
performance of semantic segmentation has been greatly improved by using deep learning …
Object detection with deep learning: A review
Due to object detection's close relationship with video analysis and image understanding, it
has attracted much research attention in recent years. Traditional object detection methods …
has attracted much research attention in recent years. Traditional object detection methods …
Causal intervention for weakly-supervised semantic segmentation
We present a causal inference framework to improve Weakly-Supervised Semantic
Segmentation (WSSS). Specifically, we aim to generate better pixel-level pseudo-masks by …
Segmentation (WSSS). Specifically, we aim to generate better pixel-level pseudo-masks by …
Unsupervised semantic segmentation by contrasting object mask proposals
Being able to learn dense semantic representations of images without supervision is an
important problem in computer vision. However, despite its significance, this problem …
important problem in computer vision. However, despite its significance, this problem …
EGNet: Edge guidance network for salient object detection
Fully convolutional neural networks (FCNs) have shown their advantages in the salient
object detection task. However, most existing FCNs-based methods still suffer from coarse …
object detection task. However, most existing FCNs-based methods still suffer from coarse …
Hierarchical alternate interaction network for RGB-D salient object detection
Existing RGB-D Salient Object Detection (SOD) methods take advantage of depth cues to
improve the detection accuracy, while pay insufficient attention to the quality of depth …
improve the detection accuracy, while pay insufficient attention to the quality of depth …
Salient object detection via integrity learning
Although current salient object detection (SOD) works have achieved significant progress,
they are limited when it comes to the integrity of the predicted salient regions. We define the …
they are limited when it comes to the integrity of the predicted salient regions. We define the …
Res2net: A new multi-scale backbone architecture
Representing features at multiple scales is of great importance for numerous vision tasks.
Recent advances in backbone convolutional neural networks (CNNs) continually …
Recent advances in backbone convolutional neural networks (CNNs) continually …
A simple pooling-based design for real-time salient object detection
We solve the problem of salient object detection by investigating how to expand the role of
pooling in convolutional neural networks. Based on the U-shape architecture, we first build a …
pooling in convolutional neural networks. Based on the U-shape architecture, we first build a …
Salient object detection in the deep learning era: An in-depth survey
As an essential problem in computer vision, salient object detection (SOD) has attracted an
increasing amount of research attention over the years. Recent advances in SOD are …
increasing amount of research attention over the years. Recent advances in SOD are …