Counterexamples and weak (1, 1) estimates of wave operators for fourth-order Schrödinger operators in dimension three
H Mizutani, Z Wan, X Yao - arxiv preprint arxiv:2311.06768, 2024 - ems.press
This paper is dedicated to investigating the Lp-bounds of wave operators W. H; 2/associated
with fourth-order Schrödinger operators HD 2 CV on R3 with real potentials satisfying jV. x/j …
with fourth-order Schrödinger operators HD 2 CV on R3 with real potentials satisfying jV. x/j …
-continuity of wave operators for higher order Schr\"odinger operators with threshold eigenvalues in high dimensions
We consider the higher order Schr\" odinger operator $ H=(-\Delta)^ m+ V (x) $ in $ n $
dimensions with real-valued potential $ V $ when $ n> 4m $, $ m\in\mathbb N $. We adapt …
dimensions with real-valued potential $ V $ when $ n> 4m $, $ m\in\mathbb N $. We adapt …
Orthonormal Strichartz estimate for dispersive equations with potentials
A Hoshiya - Journal of Functional Analysis, 2024 - Elsevier
In this paper we prove the orthonormal Strichartz estimates for the higher order and
fractional Schrödinger, wave, Klein-Gordon and Dirac equations with potentials. As in the …
fractional Schrödinger, wave, Klein-Gordon and Dirac equations with potentials. As in the …
Lp-boundedness of wave operators for bi-Schrödinger operators on the line
H Mizutani, Z Wan, X Yao - Advances in Mathematics, 2024 - Elsevier
This paper is devoted to establishing several types of L p-boundedness of wave operators
W±= W±(H, Δ 2) associated with the bi-Schrödinger operators H= Δ 2+ V (x) on the line R …
W±= W±(H, Δ 2) associated with the bi-Schrödinger operators H= Δ 2+ V (x) on the line R …
Decay estimates for Beam equations with potential in dimension three
M Chen, P Li, A Soffer, X Yao - Journal of Functional Analysis, 2025 - Elsevier
This paper is devoted to studying time decay estimates of the solution for Beam equation
(higher order type wave equation) with a potential ut t+(Δ 2+ V) u= 0, u (0, x)= f (x), ut (0, x) …
(higher order type wave equation) with a potential ut t+(Δ 2+ V) u= 0, u (0, x)= f (x), ut (0, x) …
Pointwise estimates for the fundamental solutions of higher order Schr\"{o} dinger equations in odd dimensions II: high dimensional case
H Cheng, S Huang, T Huang, Q Zheng - arxiv preprint arxiv:2409.00117, 2024 - arxiv.org
In this paper, for any odd $ n $ and any integer $ m\geq1 $ with $ n> 4m $, we study the
fundamental solution of the higher order Schr\"{o} dinger equation\begin {equation*}\mathrm …
fundamental solution of the higher order Schr\"{o} dinger equation\begin {equation*}\mathrm …
Decay estimates for beam equations with potentials on the line
S Chen, Z Wan, X Yao - arxiv preprint arxiv:2412.09061, 2024 - arxiv.org
This paper is devoted to the time decay estimates for the following beam equation with a
potential on the line: $$\partial_t^ 2 u+\left (\Delta^ 2+ m^ 2+ V (x)\right) u= 0,\\u (0, x)= f …
potential on the line: $$\partial_t^ 2 u+\left (\Delta^ 2+ m^ 2+ V (x)\right) u= 0,\\u (0, x)= f …
-boundedness of wave operators for fourth order Schr\"odinger operators with zero resonances on
H Mizutani, Z Wan, X Yao - arxiv preprint arxiv:2311.06763, 2023 - arxiv.org
Let $ H=\Delta^ 2+ V $ be the fourth-order Schr\" odinger operator on $\mathbb {R}^ 3$ with
a real-valued fast-decaying potential $ V $. If zero is neither a resonance nor an eigenvalue …
a real-valued fast-decaying potential $ V $. If zero is neither a resonance nor an eigenvalue …
[PDF][PDF] Pointwise estimates for the fundamental solutions of higher order Schrödinger equations in odd dimensions I: low dimensional case
H Cheng, S HUANG, T HUANG, Q ZHENG - arxiv - researchgate.net
In this paper, for any odd n and any integer m≥ 1 with n< 4m, we study the fundamental
solution of the higher order Schrödinger equation i∂ tu (x, t)=((−∆) m+ V (x)) u (x, t), t∈ R …
solution of the higher order Schrödinger equation i∂ tu (x, t)=((−∆) m+ V (x)) u (x, t), t∈ R …
[HTML][HTML] 四阶非齐次薛定谔算子的 KATO-JENSEN 估计
谭键, 冯红亮 - Advances in Applied Mathematics, 2024 - hanspub.org
本文研究带位势的四阶非齐次薛定谔算子H= Δ 2− Δ+ V 生成的薛定谔群e− it H 在R 5 中的Kato-
Jensen 估计, 即在加权-L 2 空间中建立e− it H 关于时间的衰减估计. 通过建立相应的谱测度 …
Jensen 估计, 即在加权-L 2 空间中建立e− it H 关于时间的衰减估计. 通过建立相应的谱测度 …