A survey of imitation learning: Algorithms, recent developments, and challenges

M Zare, PM Kebria, A Khosravi… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
In recent years, the development of robotics and artificial intelligence (AI) systems has been
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …

Recent advancements in end-to-end autonomous driving using deep learning: A survey

PS Chib, P Singh - IEEE Transactions on Intelligent Vehicles, 2023 - ieeexplore.ieee.org
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with
modular systems, such as their overwhelming complexity and propensity for error …

Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning

Q Li, Z Peng, L Feng, Q Zhang, Z Xue… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Driving safely requires multiple capabilities from human and intelligent agents, such as the
generalizability to unseen environments, the safety awareness of the surrounding traffic, and …

Fear-neuro-inspired reinforcement learning for safe autonomous driving

X He, J Wu, Z Huang, Z Hu, J Wang… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
Ensuring safety and achieving human-level driving performance remain challenges for
autonomous vehicles, especially in safety-critical situations. As a key component of artificial …

Human-in-the-loop task and motion planning for imitation learning

A Mandlekar, CR Garrett, D Xu… - Conference on Robot …, 2023 - proceedings.mlr.press
Imitation learning from human demonstrations can teach robots complex manipulation skills,
but is time-consuming and labor intensive. In contrast, Task and Motion Planning (TAMP) …

Human-guided reinforcement learning with sim-to-real transfer for autonomous navigation

J Wu, Y Zhou, H Yang, Z Huang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Reinforcement learning (RL) is a promising approach in unmanned ground vehicles (UGVs)
applications, but limited computing resource makes it challenging to deploy a well-behaved …

Learning from active human involvement through proxy value propagation

ZM Peng, W Mo, C Duan, Q Li… - Advances in neural …, 2024 - proceedings.neurips.cc
Learning from active human involvement enables the human subject to actively intervene
and demonstrate to the AI agent during training. The interaction and corrective feedback …

Robot learning on the job: Human-in-the-loop autonomy and learning during deployment

H Liu, S Nasiriany, L Zhang, Z Bao… - … International Journal of …, 2022 - journals.sagepub.com
With the rapid growth of computing powers and recent advances in deep learning, we have
witnessed impressive demonstrations of novel robot capabilities in research settings …

Safety-aware human-in-the-loop reinforcement learning with shared control for autonomous driving

W Huang, H Liu, Z Huang, C Lv - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
The learning from intervention (LfI) approach has been proven effective in improving the
performance of RL algorithms; nevertheless, existing methodologies in this domain tend to …

Trustworthy autonomous driving via defense-aware robust reinforcement learning against worst-case observational perturbations

X He, W Huang, C Lv - Transportation Research Part C: Emerging …, 2024 - Elsevier
Despite the substantial advancements in reinforcement learning (RL) in recent years,
ensuring trustworthiness remains a formidable challenge when applying this technology to …