Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Recent advances in decision trees: An updated survey
Abstract Decision Trees (DTs) are predictive models in supervised learning, known not only
for their unquestionable utility in a wide range of applications but also for their interpretability …
for their unquestionable utility in a wide range of applications but also for their interpretability …
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …
harnessed appropriately, may deliver the best of expectations over many application sectors …
Interpretable machine learning: Fundamental principles and 10 grand challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
Decision trees: from efficient prediction to responsible AI
This article provides a birds-eye view on the role of decision trees in machine learning and
data science over roughly four decades. It sketches the evolution of decision tree research …
data science over roughly four decades. It sketches the evolution of decision tree research …
Generalized and scalable optimal sparse decision trees
Decision tree optimization is notoriously difficult from a computational perspective but
essential for the field of interpretable machine learning. Despite efforts over the past 40 …
essential for the field of interpretable machine learning. Despite efforts over the past 40 …
Optimal sparse decision trees
Decision tree algorithms have been among the most popular algorithms for interpretable
(transparent) machine learning since the early 1980's. The problem that has plagued …
(transparent) machine learning since the early 1980's. The problem that has plagued …
Exploring the whole rashomon set of sparse decision trees
In any given machine learning problem, there may be many models that could explain the
data almost equally well. However, most learning algorithms return only one of these …
data almost equally well. However, most learning algorithms return only one of these …
On tackling explanation redundancy in decision trees
Decision trees (DTs) epitomize the ideal of interpretability of machine learning (ML) models.
The interpretability of decision trees motivates explainability approaches by so-called …
The interpretability of decision trees motivates explainability approaches by so-called …
Logic-based explainability in machine learning
J Marques-Silva - … Knowledge: 18th International Summer School 2022 …, 2023 - Springer
The last decade witnessed an ever-increasing stream of successes in Machine Learning
(ML). These successes offer clear evidence that ML is bound to become pervasive in a wide …
(ML). These successes offer clear evidence that ML is bound to become pervasive in a wide …
Mathematical optimization in classification and regression trees
Classification and regression trees, as well as their variants, are off-the-shelf methods in
Machine Learning. In this paper, we review recent contributions within the Continuous …
Machine Learning. In this paper, we review recent contributions within the Continuous …