Quantum computing for high-energy physics: State of the art and challenges

A Di Meglio, K Jansen, I Tavernelli, C Alexandrou… - PRX Quantum, 2024 - APS
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …

NISQ computing: where are we and where do we go?

JWZ Lau, KH Lim, H Shrotriya, LC Kwek - AAPPS bulletin, 2022 - Springer
In this short review article, we aim to provide physicists not working within the quantum
computing community a hopefully easy-to-read introduction to the state of the art in the field …

Power of data in quantum machine learning

HY Huang, M Broughton, M Mohseni… - Nature …, 2021 - nature.com
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …

A rigorous and robust quantum speed-up in supervised machine learning

Y Liu, S Arunachalam, K Temme - Nature Physics, 2021 - nature.com
Recently, several quantum machine learning algorithms have been proposed that may offer
quantum speed-ups over their classical counterparts. Most of these algorithms are either …

Is quantum advantage the right goal for quantum machine learning?

M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …

[BOOK][B] Machine learning with quantum computers

M Schuld, F Petruccione - 2021 - Springer
The introduction gives some context about what quantum machine learning is, how it got
established as a sub-discipline of quantum computing and which higher level approaches …

Information-theoretic bounds on quantum advantage in machine learning

HY Huang, R Kueng, J Preskill - Physical Review Letters, 2021 - APS
We study the performance of classical and quantum machine learning (ML) models in
predicting outcomes of physical experiments. The experiments depend on an input …

[HTML][HTML] Quantum machine learning beyond kernel methods

S Jerbi, LJ Fiderer, H Poulsen Nautrup… - Nature …, 2023 - nature.com
Abstract Machine learning algorithms based on parametrized quantum circuits are prime
candidates for near-term applications on noisy quantum computers. In this direction, various …

Synergistic pretraining of parametrized quantum circuits via tensor networks

MS Rudolph, J Miller, D Motlagh, J Chen… - Nature …, 2023 - nature.com
Parametrized quantum circuits (PQCs) represent a promising framework for using present-
day quantum hardware to solve diverse problems in materials science, quantum chemistry …

Shadows of quantum machine learning

S Jerbi, C Gyurik, SC Marshall, R Molteni… - Nature …, 2024 - nature.com
Quantum machine learning is often highlighted as one of the most promising practical
applications for which quantum computers could provide a computational advantage …