Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …
Simulating lattice gauge theories within quantum technologies
Lattice gauge theories, which originated from particle physics in the context of Quantum
Chromodynamics (QCD), provide an important intellectual stimulus to further develop …
Chromodynamics (QCD), provide an important intellectual stimulus to further develop …
Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator
The modern description of elementary particles, as formulated in the standard model of
particle physics, is built on gauge theories. Gauge theories implement fundamental laws of …
particle physics, is built on gauge theories. Gauge theories implement fundamental laws of …
Standard model physics and the digital quantum revolution: thoughts about the interface
Advances in isolating, controlling and entangling quantum systems are transforming what
was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and …
was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and …
Cold atoms meet lattice gauge theory
The central idea of this review is to consider quantum field theory models relevant for
particle physics and replace the fermionic matter in these models by a bosonic one. This is …
particle physics and replace the fermionic matter in these models by a bosonic one. This is …
Preparations for quantum simulations of quantum chromodynamics in dimensions. I. Axial gauge
Tools necessary for quantum simulations of 1+ 1 dimensional quantum chromodynamics are
developed. When formulated in axial gauge and with two flavors of quarks, this system …
developed. When formulated in axial gauge and with two flavors of quarks, this system …
Preparations for quantum simulations of quantum chromodynamics in dimensions. II. Single-baryon -decay in real time
A framework for quantum simulations of real-time weak decays of hadrons and nuclei in a
two-flavor lattice theory in one spatial dimension is presented. A single generation of the …
two-flavor lattice theory in one spatial dimension is presented. A single generation of the …
Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices
Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems
such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and …
such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and …
Light-induced gauge fields for ultracold atoms
Gauge fields are central in our modern understanding of physics at all scales. At the highest
energy scales known, the microscopic universe is governed by particles interacting with …
energy scales known, the microscopic universe is governed by particles interacting with …