Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Algorithmic fairness in artificial intelligence for medicine and healthcare
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …
Deep gait recognition: A survey
A Sepas-Moghaddam, A Etemad - IEEE transactions on pattern …, 2022 - ieeexplore.ieee.org
Gait recognition is an appealing biometric modality which aims to identify individuals based
on the way they walk. Deep learning has reshaped the research landscape in this area …
on the way they walk. Deep learning has reshaped the research landscape in this area …
Factorizing knowledge in neural networks
In this paper, we explore a novel and ambitious knowledge-transfer task, termed Knowledge
Factorization (KF). The core idea of KF lies in the modularization and assemblability of …
Factorization (KF). The core idea of KF lies in the modularization and assemblability of …
Understanding the role of individual units in a deep neural network
Deep neural networks excel at finding hierarchical representations that solve complex tasks
over large datasets. How can we humans understand these learned representations? In this …
over large datasets. How can we humans understand these learned representations? In this …
Uncovering the disentanglement capability in text-to-image diffusion models
Generative models have been widely studied in computer vision. Recently, diffusion models
have drawn substantial attention due to the high quality of their generated images. A key …
have drawn substantial attention due to the high quality of their generated images. A key …
Bayesian deep learning and a probabilistic perspective of generalization
AG Wilson, P Izmailov - Advances in neural information …, 2020 - proceedings.neurips.cc
The key distinguishing property of a Bayesian approach is marginalization, rather than using
a single setting of weights. Bayesian marginalization can particularly improve the accuracy …
a single setting of weights. Bayesian marginalization can particularly improve the accuracy …
Shape-erased feature learning for visible-infrared person re-identification
Due to the modality gap between visible and infrared images with high visual ambiguity,
learning diverse modality-shared semantic concepts for visible-infrared person re …
learning diverse modality-shared semantic concepts for visible-infrared person re …
Explainability in deep reinforcement learning
A Heuillet, F Couthouis, N Díaz-Rodríguez - Knowledge-Based Systems, 2021 - Elsevier
A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature
relevance techniques to explain a deep neural network (DNN) output or explaining models …
relevance techniques to explain a deep neural network (DNN) output or explaining models …
Task arithmetic in the tangent space: Improved editing of pre-trained models
G Ortiz-Jimenez, A Favero… - Advances in Neural …, 2024 - proceedings.neurips.cc
Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-
trained models directly in weight space: By adding the fine-tuned weights of different tasks …
trained models directly in weight space: By adding the fine-tuned weights of different tasks …
Graph structure learning with variational information bottleneck
Abstract Graph Neural Networks (GNNs) have shown promising results on a broad spectrum
of applications. Most empirical studies of GNNs directly take the observed graph as input …
of applications. Most empirical studies of GNNs directly take the observed graph as input …