Granger causality: A review and recent advances

A Shojaie, EB Fox - Annual Review of Statistics and Its …, 2022 - annualreviews.org
Introduced more than a half-century ago, Granger causality has become a popular tool for
analyzing time series data in many application domains, from economics and finance to …

Model compression and hardware acceleration for neural networks: A comprehensive survey

L Deng, G Li, S Han, L Shi, Y **e - Proceedings of the IEEE, 2020 - ieeexplore.ieee.org
Domain-specific hardware is becoming a promising topic in the backdrop of improvement
slow down for general-purpose processors due to the foreseeable end of Moore's Law …

Non-stationary transformers: Exploring the stationarity in time series forecasting

Y Liu, H Wu, J Wang, M Long - Advances in neural …, 2022 - proceedings.neurips.cc
Transformers have shown great power in time series forecasting due to their global-range
modeling ability. However, their performance can degenerate terribly on non-stationary real …

Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting

H Wu, J Xu, J Wang, M Long - Advances in neural …, 2021 - proceedings.neurips.cc
Extending the forecasting time is a critical demand for real applications, such as extreme
weather early warning and long-term energy consumption planning. This paper studies the …

Informer: Beyond efficient transformer for long sequence time-series forecasting

H Zhou, S Zhang, J Peng, S Zhang, J Li… - Proceedings of the …, 2021 - ojs.aaai.org
Many real-world applications require the prediction of long sequence time-series, such as
electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a …

Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting

S Li, X **, Y Xuan, X Zhou, W Chen… - Advances in neural …, 2019 - proceedings.neurips.cc
Time series forecasting is an important problem across many domains, including predictions
of solar plant energy output, electricity consumption, and traffic jam situation. In this paper …

Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows

N Thuerey, K Weißenow, L Prantl, X Hu - AIAA journal, 2020 - arc.aiaa.org
This study investigates the accuracy of deep learning models for the inference of Reynolds-
averaged Navier–Stokes (RANS) solutions. This study focuses on a modernized U-net …

Traffic flow forecasting with spatial-temporal graph diffusion network

X Zhang, C Huang, Y Xu, L **a, P Dai, L Bo… - Proceedings of the …, 2021 - ojs.aaai.org
Accurate forecasting of citywide traffic flow has been playing critical role in a variety of
spatial-temporal mining applications, such as intelligent traffic control and public risk …

Probabilistic transformer for time series analysis

B Tang, DS Matteson - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Generative modeling of multivariate time series has remained challenging partly due to the
complex, non-deterministic dynamics across long-distance timesteps. In this paper, we …

Bayesian temporal factorization for multidimensional time series prediction

X Chen, L Sun - IEEE Transactions on Pattern Analysis and …, 2021 - ieeexplore.ieee.org
Large-scale and multidimensional spatiotemporal data sets are becoming ubiquitous in
many real-world applications such as monitoring urban traffic and air quality. Making …