Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] RS-CLIP: Zero shot remote sensing scene classification via contrastive vision-language supervision
Zero-shot remote sensing scene classification aims to solve the scene classification problem
on unseen categories and has attracted numerous research attention in the remote sensing …
on unseen categories and has attracted numerous research attention in the remote sensing …
Multimodal intelligence: Representation learning, information fusion, and applications
Deep learning methods haverevolutionized speech recognition, image recognition, and
natural language processing since 2010. Each of these tasks involves a single modality in …
natural language processing since 2010. Each of these tasks involves a single modality in …
Conditional prompt learning for vision-language models
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential
to investigate ways to adapt these models to downstream datasets. A recently proposed …
to investigate ways to adapt these models to downstream datasets. A recently proposed …
Learning to prompt for vision-language models
Large pre-trained vision-language models like CLIP have shown great potential in learning
representations that are transferable across a wide range of downstream tasks. Different …
representations that are transferable across a wide range of downstream tasks. Different …
Learning transferable visual models from natural language supervision
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since …
object categories. This restricted form of supervision limits their generality and usability since …
Task residual for tuning vision-language models
Large-scale vision-language models (VLMs) pre-trained on billion-level data have learned
general visual representations and broad visual concepts. In principle, the well-learned …
general visual representations and broad visual concepts. In principle, the well-learned …
Progressive semantic-visual mutual adaption for generalized zero-shot learning
Abstract Generalized Zero-Shot Learning (GZSL) identifies unseen categories by knowledge
transferred from the seen domain, relying on the intrinsic interactions between visual and …
transferred from the seen domain, relying on the intrinsic interactions between visual and …
A survey of zero-shot learning: Settings, methods, and applications
Most machine-learning methods focus on classifying instances whose classes have already
been seen in training. In practice, many applications require classifying instances whose …
been seen in training. In practice, many applications require classifying instances whose …
f-vaegan-d2: A feature generating framework for any-shot learning
When labeled training data is scarce, a promising data augmentation approach is to
generate visual features of unknown classes using their attributes. To learn the class …
generate visual features of unknown classes using their attributes. To learn the class …
TN-ZSTAD: Transferable network for zero-shot temporal activity detection
An integral part of video analysis and surveillance is temporal activity detection, which
means to simultaneously recognize and localize activities in long untrimmed videos …
means to simultaneously recognize and localize activities in long untrimmed videos …