Review of deep learning based automatic segmentation for lung cancer radiotherapy

X Liu, KW Li, R Yang, LS Geng - Frontiers in oncology, 2021 - frontiersin.org
Lung cancer is the leading cause of cancer-related mortality for males and females.
Radiation therapy (RT) is one of the primary treatment modalities for lung cancer. While …

A systematic review of automated segmentation methods and public datasets for the lung and its lobes and findings on computed tomography images

D Carmo, J Ribeiro, S Dertkigil… - Yearbook of Medical …, 2022 - thieme-connect.com
Objectives: Automated computational segmentation of the lung and its lobes and findings in
X-Ray based computed tomography (CT) images is a challenging problem with important …

LDANet: Automatic lung parenchyma segmentation from CT images

Y Chen, L Feng, C Zheng, T Zhou, L Liu, P Liu… - Computers in Biology …, 2023 - Elsevier
Automatic segmentation of the lung parenchyma from computed tomography (CT) images is
helpful for the subsequent diagnosis and treatment of patients. In this paper, based on a …

[HTML][HTML] Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging

T Chauhan, H Palivela, S Tiwari - International Journal of Information …, 2021 - Elsevier
It's been more than a year that the entire world is fighting against COVID-19 pandemic.
Starting from the Wuhan city in China, COVID-19 has conquered the entire world with its …

Three-stage segmentation of lung region from CT images using deep neural networks

M Osadebey, HK Andersen, D Waaler, K Fossaa… - BMC Medical …, 2021 - Springer
Background Lung region segmentation is an important stage of automated image-based
approaches for the diagnosis of respiratory diseases. Manual methods executed by experts …

Automated lung segmentation on chest computed tomography images with extensive lung parenchymal abnormalities using a deep neural network

SJ Yoo, SH Yoon, JH Lee, KH Kim… - Korean Journal of …, 2020 - pmc.ncbi.nlm.nih.gov
Objective We aimed to develop a deep neural network for segmenting lung parenchyma
with extensive pathological conditions on non-contrast chest computed tomography (CT) …

ContactGAN development–prediction of tire-pavement contact stresses using a generative and transfer learning model

X Liu, A Jayme, IL Al-Qadi - International Journal of Pavement …, 2023 - Taylor & Francis
An accurate characterisation of tire-pavement contact stresses is important for pavement
structural analysis and performance evaluation. The demand for rapid pavement design and …

Deep learning in structural and functional lung image analysis

JR Astley, JM Wild, BA Tahir - The British Journal of Radiology, 2022 - academic.oup.com
The recent resurgence of deep learning (DL) has dramatically influenced the medical
imaging field. Medical image analysis applications have been at the forefront of DL research …

A lung dense deep convolution neural network for robust lung parenchyma segmentation

Y Chen, Y Wang, F Hu, D Wang - IEEE Access, 2020 - ieeexplore.ieee.org
Lung parenchyma segmentation is the prerequisite for an automatic diagnosis system to
analyze lung CT (computed tomography) images. However, traditional lung segmentation …

Искусственный интеллект в медицине: современное состояние и основные направления развития интеллектуальной диагностики

АА Мелдо, ЛВ Уткин… - Лучевая диагностика и …, 2020 - radiag.bmoc-spb.ru
Аннотация Главное отличие систем искусственного интеллекта (ИИ) от простых
автоматизированных алгоритмов заключается в способности к обучению, обобщению …