A survey on deep learning in medical image analysis
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …
methodology of choice for analyzing medical images. This paper reviews the major deep …
Artificial intelligence in healthcare
Artificial intelligence (AI) is gradually changing medical practice. With recent progress in
digitized data acquisition, machine learning and computing infrastructure, AI applications …
digitized data acquisition, machine learning and computing infrastructure, AI applications …
A review on deep learning in medical image analysis
Ongoing improvements in AI, particularly concerning deep learning techniques, are
assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the …
assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the …
Artificial intelligence in cancer imaging: clinical challenges and applications
Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered
data with nuanced decision making. Cancer offers a unique context for medical decisions …
data with nuanced decision making. Cancer offers a unique context for medical decisions …
Deep learning in medical imaging and radiation therapy
The goals of this review paper on deep learning (DL) in medical imaging and radiation
therapy are to (a) summarize what has been achieved to date;(b) identify common and …
therapy are to (a) summarize what has been achieved to date;(b) identify common and …
Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
Abstract Machine learning (ML) algorithms have made a tremendous impact in the field of
medical imaging. While medical imaging datasets have been growing in size, a challenge …
medical imaging. While medical imaging datasets have been growing in size, a challenge …
Overview of deep learning in medical imaging
K Suzuki - Radiological physics and technology, 2017 - Springer
The use of machine learning (ML) has been increasing rapidly in the medical imaging field,
including computer-aided diagnosis (CAD), radiomics, and medical image analysis …
including computer-aided diagnosis (CAD), radiomics, and medical image analysis …
Current applications and future impact of machine learning in radiology
Recent advances and future perspectives of machine learning techniques offer promising
applications in medical imaging. Machine learning has the potential to improve different …
applications in medical imaging. Machine learning has the potential to improve different …
[HTML][HTML] A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues
In the last few years, the application of Machine Learning approaches like Deep Neural
Network (DNN) models have become more attractive in the healthcare system given the …
Network (DNN) models have become more attractive in the healthcare system given the …
On the analyses of medical images using traditional machine learning techniques and convolutional neural networks
Convolutional neural network (CNN) has shown dissuasive accomplishment on different
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …