Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey of imitation learning: Algorithms, recent developments, and challenges
M Zare, PM Kebria, A Khosravi… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
In recent years, the development of robotics and artificial intelligence (AI) systems has been
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …
Human-robot teaming: grand challenges
Abstract Purpose of Review Current real-world interaction between humans and robots is
extremely limited. We present challenges that, if addressed, will enable humans and robots …
extremely limited. We present challenges that, if addressed, will enable humans and robots …
Diffusion policy: Visuomotor policy learning via action diffusion
This paper introduces Diffusion Policy, a new way of generating robot behavior by
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
Learning fine-grained bimanual manipulation with low-cost hardware
Fine manipulation tasks, such as threading cable ties or slotting a battery, are notoriously
difficult for robots because they require precision, careful coordination of contact forces, and …
difficult for robots because they require precision, careful coordination of contact forces, and …
Mobile aloha: Learning bimanual mobile manipulation with low-cost whole-body teleoperation
Imitation learning from human demonstrations has shown impressive performance in
robotics. However, most results focus on table-top manipulation, lacking the mobility and …
robotics. However, most results focus on table-top manipulation, lacking the mobility and …
Principled reinforcement learning with human feedback from pairwise or k-wise comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback
(RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry …
(RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry …
Code as policies: Language model programs for embodied control
Large language models (LLMs) trained on code-completion have been shown to be capable
of synthesizing simple Python programs from docstrings [1]. We find that these code-writing …
of synthesizing simple Python programs from docstrings [1]. We find that these code-writing …
Perceiver-actor: A multi-task transformer for robotic manipulation
Transformers have revolutionized vision and natural language processing with their ability to
scale with large datasets. But in robotic manipulation, data is both limited and expensive …
scale with large datasets. But in robotic manipulation, data is both limited and expensive …
Scaling up and distilling down: Language-guided robot skill acquisition
We present a framework for robot skill acquisition, which 1) efficiently scale up data
generation of language-labelled robot data and 2) effectively distills this data down into a …
generation of language-labelled robot data and 2) effectively distills this data down into a …
Interactive language: Talking to robots in real time
We present a framework for building interactive, real-time, natural language-instructable
robots in the real world, and we open source related assets (dataset, environment …
robots in the real world, and we open source related assets (dataset, environment …