A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

An overview of deep learning in medical imaging focusing on MRI

AS Lundervold, A Lundervold - arxiv preprint arxiv:1811.10052, 2018 - arxiv.org
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …

Adaptive diffusion priors for accelerated MRI reconstruction

A Güngör, SUH Dar, Ş Öztürk, Y Korkmaz… - Medical image …, 2023 - Elsevier
Deep MRI reconstruction is commonly performed with conditional models that de-alias
undersampled acquisitions to recover images consistent with fully-sampled data. Since …

Robust compressed sensing mri with deep generative priors

A Jalal, M Arvinte, G Daras, E Price… - Advances in …, 2021 - proceedings.neurips.cc
Abstract The CSGM framework (Bora-Jalal-Price-Dimakis' 17) has shown that
deepgenerative priors can be powerful tools for solving inverse problems. However, to date …

Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

K Zhou, E Diehl, J Tang - Mechanical Systems and Signal Processing, 2023 - Elsevier
Fault detection and diagnosis of gear systems using vibration measurements play an
important role in ensuring their functional reliability and safety. Computational intelligence …

NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction

L Shen, J Pauly, L **ng - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Image reconstruction is an inverse problem that solves for a computational image based on
sampled sensor measurement. Sparsely sampled image reconstruction poses additional …

Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Y Korkmaz, SUH Dar, M Yurt, M Özbey… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Supervised reconstruction models are characteristically trained on matched pairs of
undersampled and fully-sampled data to capture an MRI prior, along with supervision …

Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey

K Muhammad, S Khan, J Del Ser… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade
recognition is a challenging problem for radiologists in health monitoring and automated …

fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning

F Knoll, J Zbontar, A Sriram, MJ Muckley… - Radiology: Artificial …, 2020 - pubs.rsna.org
fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated
MR Image Reconstruction Using Machine Learning | Radiology: Artificial Intelligence RSNA …

Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline

L Henschel, S Conjeti, S Estrada, K Diers, B Fischl… - NeuroImage, 2020 - Elsevier
Traditional neuroimage analysis pipelines involve computationally intensive, time-
consuming optimization steps, and thus, do not scale well to large cohort studies with …