[HTML][HTML] Review of image classification algorithms based on convolutional neural networks
L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …
emergence of deep learning has promoted the development of this field. Convolutional …
Text data augmentation for deep learning
Abstract Natural Language Processing (NLP) is one of the most captivating applications of
Deep Learning. In this survey, we consider how the Data Augmentation training strategy can …
Deep Learning. In this survey, we consider how the Data Augmentation training strategy can …
Self-instruct: Aligning language models with self-generated instructions
Large" instruction-tuned" language models (ie, finetuned to respond to instructions) have
demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they …
demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they …
[HTML][HTML] Deep learning in food category recognition
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …
research for the past few decades. It is potentially one of the next steps in revolutionizing …
Eva: Exploring the limits of masked visual representation learning at scale
We launch EVA, a vision-centric foundation model to explore the limits of visual
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …
Internimage: Exploring large-scale vision foundation models with deformable convolutions
Compared to the great progress of large-scale vision transformers (ViTs) in recent years,
large-scale models based on convolutional neural networks (CNNs) are still in an early …
large-scale models based on convolutional neural networks (CNNs) are still in an early …
MobileNetV4: universal models for the mobile ecosystem
We present the latest generation of MobileNets: MobileNetV4 (MNv4). They feature
universally-efficient architecture designs for mobile devices. We introduce the Universal …
universally-efficient architecture designs for mobile devices. We introduce the Universal …
Google usm: Scaling automatic speech recognition beyond 100 languages
We introduce the Universal Speech Model (USM), a single large model that performs
automatic speech recognition (ASR) across 100+ languages. This is achieved by pre …
automatic speech recognition (ASR) across 100+ languages. This is achieved by pre …
Towards unbounded machine unlearning
Deep machine unlearning is the problem of'removing'from a trained neural network a subset
of its training set. This problem is very timely and has many applications, including the key …
of its training set. This problem is very timely and has many applications, including the key …
Large language models can self-improve
Large Language Models (LLMs) have achieved excellent performances in various tasks.
However, fine-tuning an LLM requires extensive supervision. Human, on the other hand …
However, fine-tuning an LLM requires extensive supervision. Human, on the other hand …