Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

A manifesto for applying behavioural science

M Hallsworth - Nature Human Behaviour, 2023 - nature.com
Recent years have seen a rapid increase in the use of behavioural science to address the
priorities of public and private sector actors. There is now a vibrant ecosystem of …

Methods and tools for causal discovery and causal inference

AR Nogueira, A Pugnana, S Ruggieri… - … reviews: data mining …, 2022 - Wiley Online Library
Causality is a complex concept, which roots its developments across several fields, such as
statistics, economics, epidemiology, computer science, and philosophy. In recent years, the …

Causal machine learning for predicting treatment outcomes

S Feuerriegel, D Frauen, V Melnychuk, J Schweisthal… - Nature Medicine, 2024 - nature.com
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment
outcomes including efficacy and toxicity, thereby supporting the assessment and safety of …

A survey on causal inference

L Yao, Z Chu, S Li, Y Li, J Gao, A Zhang - ACM Transactions on …, 2021 - dl.acm.org
Causal inference is a critical research topic across many domains, such as statistics,
computer science, education, public policy, and economics, for decades. Nowadays …

The impacts of ocean acidification on marine ecosystems and reliant human communities

SC Doney, DS Busch, SR Cooley… - Annual Review of …, 2020 - annualreviews.org
Racism. Sexism. Heterosexism. Gender binarism. Together, they comprise intimately
harmful, distinct, and entangled societal systems of self-serving domination and privilege …

Machine learning methods that economists should know about

S Athey, GW Imbens - Annual Review of Economics, 2019 - annualreviews.org
We discuss the relevance of the recent machine learning (ML) literature for economics and
econometrics. First we discuss the differences in goals, methods, and settings between the …

Estimating treatment effects with causal forests: An application

S Athey, S Wager - Observational studies, 2019 - muse.jhu.edu
We apply causal forests to a dataset derived from the National Study of Learning Mindsets,
and discusses resulting practical and conceptual challenges. This note will appear in an …

Quasi-oracle estimation of heterogeneous treatment effects

X Nie, S Wager - Biometrika, 2021 - academic.oup.com
Flexible estimation of heterogeneous treatment effects lies at the heart of many statistical
applications, such as personalized medicine and optimal resource allocation. In this article …

[PDF][PDF] The impact of machine learning on economics

S Athey - The economics of artificial intelligence: An agenda, 2018 - nber.org
This paper provides an assessment of the early contributions of machine learning to
economics, as well as predictions about its future contributions. It begins by briefly …