Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Federated learning meets blockchain in edge computing: Opportunities and challenges

DC Nguyen, M Ding, QV Pham… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the
massive volume of data generated from ubiquitous mobile devices for enabling intelligent …

Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems

OA Wahab, A Mourad, H Otrok… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …

Federated learning in mobile edge networks: A comprehensive survey

WYB Lim, NC Luong, DT Hoang, Y Jiao… - … surveys & tutorials, 2020 - ieeexplore.ieee.org
In recent years, mobile devices are equipped with increasingly advanced sensing and
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …

A survey of federated learning for edge computing: Research problems and solutions

Q **a, W Ye, Z Tao, J Wu, Q Li - High-Confidence Computing, 2021 - Elsevier
Federated Learning is a machine learning scheme in which a shared prediction model can
be collaboratively learned by a number of distributed nodes using their locally stored data. It …

Deep reinforcement learning for resource management on network slicing: A survey

JA Hurtado Sánchez, K Casilimas… - Sensors, 2022 - mdpi.com
Network Slicing and Deep Reinforcement Learning (DRL) are vital enablers for achieving
5G and 6G networks. A 5G/6G network can comprise various network slices from unique or …

Challenges, applications and design aspects of federated learning: A survey

KMJ Rahman, F Ahmed, N Akhter, M Hasan… - IEEE …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a new technology that has been a hot research topic. It enables
the training of an algorithm across multiple decentralized edge devices or servers holding …

[HTML][HTML] A survey: Distributed Machine Learning for 5G and beyond

O Nassef, W Sun, H Purmehdi, M Tatipamula… - Computer Networks, 2022 - Elsevier
Abstract 5 G is the fifth generation of cellular networks. It enables billions of connected
devices to gather and share information in real time; a key facilitator in Industrial Internet of …

Edge-native intelligence for 6G communications driven by federated learning: A survey of trends and challenges

M Al-Quraan, L Mohjazi, L Bariah… - … on Emerging Topics …, 2023 - ieeexplore.ieee.org
New technological advancements in wireless networks have enlarged the number of
connected devices. The unprecedented surge of data volume in wireless systems …

Communication and computation efficiency in federated learning: A survey

ORA Almanifi, CO Chow, ML Tham, JH Chuah… - Internet of Things, 2023 - Elsevier
Federated Learning is a much-needed technology in this golden era of big data and Artificial
Intelligence, due to its vital role in preserving data privacy, and eliminating the need to …