A review of feature selection and its methods

B Venkatesh, J Anuradha - Cybernetics and information technologies, 2019 - sciendo.com
Nowadays, being in digital era the data generated by various applications are increasing
drastically both row-wise and column wise; this creates a bottleneck for analytics and also …

A review of recent developments in driver drowsiness detection systems

Y Albadawi, M Takruri, M Awad - Sensors, 2022 - mdpi.com
Continuous advancements in computing technology and artificial intelligence in the past
decade have led to improvements in driver monitoring systems. Numerous experimental …

A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition

A Moin, A Zhou, A Rahimi, A Menon, S Benatti… - Nature …, 2021 - nature.com
Wearable devices that monitor muscle activity based on surface electromyography could be
of use in the development of hand gesture recognition applications. Such devices typically …

Review of swarm intelligence-based feature selection methods

M Rostami, K Berahmand, E Nasiri… - … Applications of Artificial …, 2021 - Elsevier
In the past decades, the rapid growth of computer and database technologies has led to the
rapid growth of large-scale datasets. On the other hand, data mining applications with high …

A Complete Process of Text Classification System Using State‐of‐the‐Art NLP Models

V Dogra, S Verma, Kavita, P Chatterjee… - Computational …, 2022 - Wiley Online Library
With the rapid advancement of information technology, online information has been
exponentially growing day by day, especially in the form of text documents such as news …

Feature selection: A data perspective

J Li, K Cheng, S Wang, F Morstatter… - ACM computing …, 2017 - dl.acm.org
Feature selection, as a data preprocessing strategy, has been proven to be effective and
efficient in preparing data (especially high-dimensional data) for various data-mining and …

[HTML][HTML] Dual regularized unsupervised feature selection based on matrix factorization and minimum redundancy with application in gene selection

F Saberi-Movahed, M Rostami, K Berahmand… - Knowledge-Based …, 2022 - Elsevier
Gene expression data have become increasingly important in machine learning and
computational biology over the past few years. In the field of gene expression analysis …

An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future …

D Sadeghi, A Shoeibi, N Ghassemi, P Moridian… - Computers in Biology …, 2022 - Elsevier
Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early
adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior …

Dlow: Diversifying latent flows for diverse human motion prediction

Y Yuan, K Kitani - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
Deep generative models are often used for human motion prediction as they are able to
model multi-modal data distributions and characterize diverse human behavior. While much …

[HTML][HTML] Graph-based relevancy-redundancy gene selection method for cancer diagnosis

S Azadifar, M Rostami, K Berahmand, P Moradi… - Computers in Biology …, 2022 - Elsevier
Nowadays, microarray data processing is one of the most important applications in
molecular biology for cancer diagnosis. A major task in microarray data processing is gene …