Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
Applications of generative AI (GAI) for mobile and wireless networking: A survey
The success of artificial intelligence (AI) in multiple disciplines and vertical domains in recent
years has promoted the evolution of mobile networking and the future Internet toward an AI …
years has promoted the evolution of mobile networking and the future Internet toward an AI …
Prompt-aligned gradient for prompt tuning
Thanks to the large pre-trained vision-language models (VLMs) like CLIP, we can craft a
zero-shot classifier by discrete prompt design, eg, the confidence score of an image …
zero-shot classifier by discrete prompt design, eg, the confidence score of an image …
Sharpness-aware gradient matching for domain generalization
The goal of domain generalization (DG) is to enhance the generalization capability of the
model learned from a source domain to other unseen domains. The recently developed …
model learned from a source domain to other unseen domains. The recently developed …
Federated domain generalization with generalization adjustment
Abstract Federated Domain Generalization (FedDG) attempts to learn a global model in a
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Shortcut learning of large language models in natural language understanding
Shortcut Learning of Large Language Models in Natural Language Understanding Page 1 110
COMMUNICATIONS OF THE ACM | JANUARY 2024 | VOL. 67 | NO. 1 research IMA GE B Y …
COMMUNICATIONS OF THE ACM | JANUARY 2024 | VOL. 67 | NO. 1 research IMA GE B Y …
Improving out-of-distribution robustness via selective augmentation
Abstract Machine learning algorithms typically assume that training and test examples are
drawn from the same distribution. However, distribution shift is a common problem in real …
drawn from the same distribution. However, distribution shift is a common problem in real …
Discover and cure: Concept-aware mitigation of spurious correlation
Deep neural networks often rely on spurious correlations to make predictions, which hinders
generalization beyond training environments. For instance, models that associate cats with …
generalization beyond training environments. For instance, models that associate cats with …
Domain generalization by mutual-information regularization with pre-trained models
Abstract Domain generalization (DG) aims to learn a generalized model to an unseen target
domain using only limited source domains. Previous attempts to DG fail to learn domain …
domain using only limited source domains. Previous attempts to DG fail to learn domain …