A review of recurrent neural networks: LSTM cells and network architectures

Y Yu, X Si, C Hu, J Zhang - Neural computation, 2019 - direct.mit.edu
Recurrent neural networks (RNNs) have been widely adopted in research areas concerned
with sequential data, such as text, audio, and video. However, RNNs consisting of sigma …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

An empirical evaluation of generic convolutional and recurrent networks for sequence modeling

S Bai, JZ Kolter, V Koltun - arxiv preprint arxiv:1803.01271, 2018 - arxiv.org
For most deep learning practitioners, sequence modeling is synonymous with recurrent
networks. Yet recent results indicate that convolutional architectures can outperform …

Clip4clip: An empirical study of clip for end to end video clip retrieval and captioning

H Luo, L Ji, M Zhong, Y Chen, W Lei, N Duan, T Li - Neurocomputing, 2022 - Elsevier
Video clip retrieval and captioning tasks play an essential role in multimodal research and
are the fundamental research problem for multimodal understanding and generation. The …

[PDF][PDF] End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

X Ma - arxiv preprint arxiv:1603.01354, 2016 - njuhugn.github.io
State-of-the-art sequence labeling systems traditionally require large amounts of task-
specific knowledge in the form of hand-crafted features and data pre-processing. In this …

Deep learning and its applications to machine health monitoring

R Zhao, R Yan, Z Chen, K Mao, P Wang… - Mechanical Systems and …, 2019 - Elsevier
Abstract Since 2006, deep learning (DL) has become a rapidly growing research direction,
redefining state-of-the-art performances in a wide range of areas such as object recognition …

Deep learning in neural networks: An overview

J Schmidhuber - Neural networks, 2015 - Elsevier
In recent years, deep artificial neural networks (including recurrent ones) have won
numerous contests in pattern recognition and machine learning. This historical survey …

Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition

FJ Ordóñez, D Roggen - Sensors, 2016 - mdpi.com
Human activity recognition (HAR) tasks have traditionally been solved using engineered
features obtained by heuristic processes. Current research suggests that deep convolutional …

The history began from alexnet: A comprehensive survey on deep learning approaches

MZ Alom, TM Taha, C Yakopcic, S Westberg… - arxiv preprint arxiv …, 2018 - arxiv.org
Deep learning has demonstrated tremendous success in variety of application domains in
the past few years. This new field of machine learning has been growing rapidly and applied …

An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition

B Shi, X Bai, C Yao - IEEE transactions on pattern analysis and …, 2016 - ieeexplore.ieee.org
Image-based sequence recognition has been a long-standing research topic in computer
vision. In this paper, we investigate the problem of scene text recognition, which is among …