Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Quiet-star: Language models can teach themselves to think before speaking
E Zelikman, G Harik, Y Shao, V Jayasiri… - arxiv preprint arxiv …, 2024 - arxiv.org
When writing and talking, people sometimes pause to think. Although reasoning-focused
works have often framed reasoning as a method of answering questions or completing …
works have often framed reasoning as a method of answering questions or completing …
LOG: A Local-to-Global Optimization Approach for Retrieval-based Explainable Multi-Hop Question Answering
H Xu, Y Zhao, J Zhang, Z Wang… - Proceedings of the 31st …, 2025 - aclanthology.org
Multi-hop question answering (MHQA) aims to utilize multi-source intensive documents
retrieved to derive the answer. However, it is very challenging to model the importance of …
retrieved to derive the answer. However, it is very challenging to model the importance of …
An Overview and Discussion on Using Large Language Models for Implementation Generation of Solutions to Open-Ended Problems
Large Language Models offer new opportunities to devise automated implementation
generation methods that can tackle problem solving activities beyond traditional methods …
generation methods that can tackle problem solving activities beyond traditional methods …
Efficient Parallel Multi-Hop Reasoning: A Scalable Approach for Knowledge Graph Analysis
Multi-hop reasoning (MHR) is a process in artificial intelligence and natural language
processing where a system needs to make multiple inferential steps to arrive at a conclusion …
processing where a system needs to make multiple inferential steps to arrive at a conclusion …
Structured State Tracking for Natural Language Understanding
JT Chiu - 2024 - search.proquest.com
Autonomous agents that collaborate with humans must understand language, track the state
of the world, and make good decisions. A central challenge common to these three …
of the world, and make good decisions. A central challenge common to these three …
Sampling Language from Latent System 2 Reasoning
Modern language modeling datasets require models to handle system-2 compositional
reasoning, fact recall, and task-specific constraints. While these tasks are expressed in …
reasoning, fact recall, and task-specific constraints. While these tasks are expressed in …
Pointer Network based Supporting Sentence Inference Method for Reliability and Transparency
K Han, Y Jang, H Kim - Annual Conference on Human and …, 2024 - koreascience.kr
거대 언어 모델은 다양한 응용 분야에서 뛰어난 성능을 보이지만, 여전히 추론 과정의
불투명성과 환각 현상으로 인해 신뢰성에 대한 문제가 제기되고 있다. 이는 사용자가 모델의 …
불투명성과 환각 현상으로 인해 신뢰성에 대한 문제가 제기되고 있다. 이는 사용자가 모델의 …
[CITATION][C] 설명 가능한 질의응답 시스템 기술 연구 동향
장영진, 김학수 - 정보과학회지, 2024 - dbpia.co.kr
자연어처리 분야 인공지능의 발전으로 특정 분야에대한 응용 사례가 점차 확대되고 있다 [1-3].
특히 ChatGPT [4] 와 같은 초거대 언어모델 (Large Language Model; LLM)[4-6] 의 등장으로 …
특히 ChatGPT [4] 와 같은 초거대 언어모델 (Large Language Model; LLM)[4-6] 의 등장으로 …
[CITATION][C] 설명 가능한 AI 를 위한 거대 언어모델의 근거 생성 능력 평가
한규빈, 박윤진, 장영진, 김학수 - 한국정보과학회 학술발표논문집, 2024 - dbpia.co.kr
거대 언어모델은 자연어처리 분야에서 우수한 성능을 보이지만, 기존 인공 신경망의
문제점인투명성, 신뢰성 문제를 여전히 해결하지 못하고 있다. 최근 이러한 문제를 해결하기 …
문제점인투명성, 신뢰성 문제를 여전히 해결하지 못하고 있다. 최근 이러한 문제를 해결하기 …