Exploration in deep reinforcement learning: A survey
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …
techniques are of primary importance when solving sparse reward problems. In sparse …
A survey of imitation learning: Algorithms, recent developments, and challenges
M Zare, PM Kebria, A Khosravi… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
In recent years, the development of robotics and artificial intelligence (AI) systems has been
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
Foundation models for decision making: Problems, methods, and opportunities
Foundation models pretrained on diverse data at scale have demonstrated extraordinary
capabilities in a wide range of vision and language tasks. When such models are deployed …
capabilities in a wide range of vision and language tasks. When such models are deployed …
Agent57: Outperforming the atari human benchmark
Atari games have been a long-standing benchmark in the reinforcement learning (RL)
community for the past decade. This benchmark was proposed to test general competency …
community for the past decade. This benchmark was proposed to test general competency …
Reinforcement learning with action-free pre-training from videos
Recent unsupervised pre-training methods have shown to be effective on language and
vision domains by learning useful representations for multiple downstream tasks. In this …
vision domains by learning useful representations for multiple downstream tasks. In this …
An introduction to deep reinforcement learning
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …
learning. This field of research has been able to solve a wide range of complex …
Exploration by random network distillation
We introduce an exploration bonus for deep reinforcement learning methods that is easy to
implement and adds minimal overhead to the computation performed. The bonus is the error …
implement and adds minimal overhead to the computation performed. The bonus is the error …
First return, then explore
Reinforcement learning promises to solve complex sequential-decision problems
autonomously by specifying a high-level reward function only. However, reinforcement …
autonomously by specifying a high-level reward function only. However, reinforcement …
Deep reinforcement learning: a survey
Deep reinforcement learning (RL) has become one of the most popular topics in artificial
intelligence research. It has been widely used in various fields, such as end-to-end control …
intelligence research. It has been widely used in various fields, such as end-to-end control …