Conway topograph,-dynamics and two-valued groups

VM Buchstaber, AP Veselov - Russian Mathematical Surveys, 2019 - iopscience.iop.org
Conway's topographic approach to binary quadratic forms and Markov triples is reviewed
from the point of view of the theory of two-valued groups. This leads naturally to a new class …

Growth of values of binary quadratic forms and Conway rivers

K Spalding, AP Veselov - Bulletin of the London Mathematical …, 2018 - Wiley Online Library
We study the growth of the values of integer binary quadratic forms Q on a binary planar tree
as it was described by Conway. We show that the corresponding Lyapunov exponents Λ Q …

Automorphic Lie algebras and modular forms

V Knibbeler, S Lombardo… - International Mathematics …, 2023 - academic.oup.com
We introduce and study certain hyperbolic versions of automorphic Lie algebras related to
the modular group. Let be a finite index subgroup of with an action on a complex simple Lie …

Traversing three-manifold triangulations and spines

JH Rubinstein, H Segerman, S Tillmann - L'Enseignement Mathématique, 2020 - ems.press
A celebrated result concerning triangulations of a given closed three-manifold is that any two
triangulations with the same number of vertices are connected by a sequence of so-called 2 …

Twist numbers on hyperbolic once-punctured tori

J Gaster - arxiv preprint arxiv:2312.05394, 2023 - arxiv.org
On a hyperbolic surface homeomorphic to a torus with a puncture, each oriented simple
geodesic inherits a well-defined relative twist number in $[0, 1] $, given by the ratio to its …

Топограф Конвея, -динамика и двузначные группы

ВМ Бухштабер, АП Веселов - Успехи математических наук, 2019 - mathnet.ru
Изучение значений бинарных квадратичных форм–классическая тема, восходящая к
Лежандру и Гауссу. Вопрос о числах N, которые можно представить в виде суммы …

Eisenstein integers and equilateral ideal triangles

G McShane - arxiv preprint arxiv:2403.14375, 2024 - arxiv.org
We discuss the relationship between Penner's $\lambda $-length and the norms of
Eisenstein integers. This leads to a geometric proof of the fact, attributed to Fermat, that …

[HTML][HTML] The worst approximable rational numbers

B Springborn - Journal of Number Theory, 2024 - Elsevier
We classify and enumerate all rational numbers with approximation constant at least 1 3
using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus …

The sum of Lagrange numbers

J Gaster, B Loustau - Proceedings of the American Mathematical Society, 2021 - ams.org
Combining McShane's identity on a hyperbolic punctured torus with well-known geometric
interpretations of the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent …

Orthotree, orthoshapes and ortho-integral surfaces

NM Doan - arxiv preprint arxiv:2112.10694, 2021 - arxiv.org
This paper describes a tree structure on the set of orthogeodesics leading to a combinatorial
proof of Basmajian's identity in the case of surfaces. It is motivated by a number theoretic …