Survey on deep learning with class imbalance

JM Johnson, TM Khoshgoftaar - Journal of big data, 2019 - Springer
The purpose of this study is to examine existing deep learning techniques for addressing
class imbalanced data. Effective classification with imbalanced data is an important area of …

Machine learning for landslides prevention: a survey

Z Ma, G Mei, F Piccialli - Neural Computing and Applications, 2021 - Springer
Landslides are one of the most critical categories of natural disasters worldwide and induce
severely destructive outcomes to human life and the overall economic system. To reduce its …

Balanced contrastive learning for long-tailed visual recognition

J Zhu, Z Wang, J Chen, YPP Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …

The class imbalance problem in deep learning

K Ghosh, C Bellinger, R Corizzo, P Branco… - Machine Learning, 2024 - Springer
Deep learning has recently unleashed the ability for Machine learning (ML) to make
unparalleled strides. It did so by confronting and successfully addressing, at least to a …

Rethinking the value of labels for improving class-imbalanced learning

Y Yang, Z Xu - Advances in neural information processing …, 2020 - proceedings.neurips.cc
Real-world data often exhibits long-tailed distributions with heavy class imbalance, posing
great challenges for deep recognition models. We identify a persisting dilemma on the value …

Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT

X Zhou, Y Hu, J Wu, W Liang, J Ma… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The impact of Internet of Things (IoT) has become increasingly significant in smart
manufacturing, while deep generative model (DGM) is viewed as a promising learning …

Addressing class imbalance in federated learning

L Wang, S Xu, X Wang, Q Zhu - Proceedings of the AAAI conference on …, 2021 - ojs.aaai.org
Federated learning (FL) is a promising approach for training decentralized data located on
local client devices while improving efficiency and privacy. However, the distribution and …

GAN augmentation to deal with imbalance in imaging-based intrusion detection

G Andresini, A Appice, L De Rose, D Malerba - Future Generation …, 2021 - Elsevier
Nowadays attacks on computer networks continue to advance at a rate outpacing cyber
defenders' ability to write new attack signatures. This paper illustrates a deep learning …

A comprehensive survey on optimizing deep learning models by metaheuristics

B Akay, D Karaboga, R Akay - Artificial Intelligence Review, 2022 - Springer
Deep neural networks (DNNs), which are extensions of artificial neural networks, can learn
higher levels of feature hierarchy established by lower level features by transforming the raw …

Training strategies for radiology deep learning models in data-limited scenarios

S Candemir, XV Nguyen, LR Folio… - Radiology: Artificial …, 2021 - pubs.rsna.org
Data-driven approaches have great potential to shape future practices in radiology. The
most straightforward strategy to obtain clinically accurate models is to use large, well …