Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Noise-induced barren plateaus in variational quantum algorithms
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …
Barren plateaus in quantum neural network training landscapes
Many experimental proposals for noisy intermediate scale quantum devices involve training
a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum …
a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum …
Quantum chemistry in the age of quantum computing
Practical challenges in simulating quantum systems on classical computers have been
widely recognized in the quantum physics and quantum chemistry communities over the …
widely recognized in the quantum physics and quantum chemistry communities over the …
Cost function dependent barren plateaus in shallow parametrized quantum circuits
Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized
quantum circuit V (θ) to minimize a cost function C. While VQAs may enable practical …
quantum circuit V (θ) to minimize a cost function C. While VQAs may enable practical …
Parameterized quantum circuits as machine learning models
Hybrid quantum–classical systems make it possible to utilize existing quantum computers to
their fullest extent. Within this framework, parameterized quantum circuits can be regarded …
their fullest extent. Within this framework, parameterized quantum circuits can be regarded …
Pennylane: Automatic differentiation of hybrid quantum-classical computations
PennyLane is a Python 3 software framework for differentiable programming of quantum
computers. The library provides a unified architecture for near-term quantum computing …
computers. The library provides a unified architecture for near-term quantum computing …
Machine learning & artificial intelligence in the quantum domain: a review of recent progress
Quantum information technologies, on the one hand, and intelligent learning systems, on the
other, are both emergent technologies that are likely to have a transformative impact on our …
other, are both emergent technologies that are likely to have a transformative impact on our …