Network intrusion detection for IoT security based on learning techniques

N Chaabouni, M Mosbah, A Zemmari… - … Surveys & Tutorials, 2019 - ieeexplore.ieee.org
Pervasive growth of Internet of Things (IoT) is visible across the globe. The 2016 Dyn
cyberattack exposed the critical fault-lines among smart networks. Security of IoT has …

[HTML][HTML] A systematic literature review of methods and datasets for anomaly-based network intrusion detection

Z Yang, X Liu, T Li, D Wu, J Wang, Y Zhao, H Han - Computers & Security, 2022 - Elsevier
As network techniques rapidly evolve, attacks are becoming increasingly sophisticated and
threatening. Network intrusion detection has been widely accepted as an effective method to …

A deep learning approach to network intrusion detection

N Shone, TN Ngoc, VD Phai… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Network intrusion detection systems (NIDSs) play a crucial role in defending computer
networks. However, there are concerns regarding the feasibility and sustainability of current …

A survey on machine learning techniques for cyber security in the last decade

K Shaukat, S Luo, V Varadharajan, IA Hameed… - IEEE …, 2020 - ieeexplore.ieee.org
Pervasive growth and usage of the Internet and mobile applications have expanded
cyberspace. The cyberspace has become more vulnerable to automated and prolonged …

Explainable intrusion detection for cyber defences in the internet of things: Opportunities and solutions

N Moustafa, N Koroniotis, M Keshk… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
The field of Explainable Artificial Intelligence (XAI) has garnered considerable research
attention in recent years, aiming to provide interpretability and confidence to the inner …

Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges

HF Nweke, YW Teh, MA Al-Garadi, UR Alo - Expert Systems with …, 2018 - Elsevier
Human activity recognition systems are developed as part of a framework to enable
continuous monitoring of human behaviours in the area of ambient assisted living, sports …

A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges

J **e, FR Yu, T Huang, R **e, J Liu… - … Surveys & Tutorials, 2018 - ieeexplore.ieee.org
In recent years, with the rapid development of current Internet and mobile communication
technologies, the infrastructure, devices and resources in networking systems are becoming …

Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues

A Aldweesh, A Derhab, AZ Emam - Knowledge-Based Systems, 2020 - Elsevier
The massive growth of data that are transmitted through a variety of devices and
communication protocols have raised serious security concerns, which have increased the …

Deep learning for intelligent wireless networks: A comprehensive survey

Q Mao, F Hu, Q Hao - IEEE Communications Surveys & …, 2018 - ieeexplore.ieee.org
As a promising machine learning tool to handle the accurate pattern recognition from
complex raw data, deep learning (DL) is becoming a powerful method to add intelligence to …

Deep learning methods in network intrusion detection: A survey and an objective comparison

S Gamage, J Samarabandu - Journal of Network and Computer …, 2020 - Elsevier
The use of deep learning models for the network intrusion detection task has been an active
area of research in cybersecurity. Although several excellent surveys cover the growing …