Principal component analysis

M Greenacre, PJF Groenen, T Hastie… - Nature Reviews …, 2022 - nature.com
Principal component analysis is a versatile statistical method for reducing a cases-by-
variables data table to its essential features, called principal components. Principal …

Correlation and association analyses in microbiome study integrating multiomics in health and disease

Y ** branch of nonlinear optimization. Its focus
is on problems where the smooth geometry of the search space can be leveraged to design …

[PDF][PDF] Linear dimensionality reduction: Survey, insights, and generalizations

JP Cunningham, Z Ghahramani - The Journal of Machine Learning …, 2015 - jmlr.org
Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional
data, due to their simple geometric interpretations and typically attractive computational …

[BOOK][B] MM optimization algorithms

K Lange - 2016 - SIAM
Algorithms have never been more important. As the recipes of computer programs,
algorithms rule our lives. Although they can be forces for both good and evil, this is not a …

[HTML][HTML] Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods

T Li, G Kou, Y Peng - Information Systems, 2020 - Elsevier
In malicious URLs detection, traditional classifiers are challenged because the data volume
is huge, patterns are changing over time, and the correlations among features are …

[BOOK][B] Statistical foundations of data science

J Fan, R Li, CH Zhang, H Zou - 2020 - taylorfrancis.com
Statistical Foundations of Data Science gives a thorough introduction to commonly used
statistical models, contemporary statistical machine learning techniques and algorithms …