Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on deep learning and its applications
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …
Deep neural network concepts for background subtraction: A systematic review and comparative evaluation
Conventional neural networks have been demonstrated to be a powerful framework for
background subtraction in video acquired by static cameras. Indeed, the well-known Self …
background subtraction in video acquired by static cameras. Indeed, the well-known Self …
Dataset condensation with distribution matching
Computational cost of training state-of-the-art deep models in many learning problems is
rapidly increasing due to more sophisticated models and larger datasets. A recent promising …
rapidly increasing due to more sophisticated models and larger datasets. A recent promising …
Datadam: Efficient dataset distillation with attention matching
Researchers have long tried to minimize training costs in deep learning while maintaining
strong generalization across diverse datasets. Emerging research on dataset distillation …
strong generalization across diverse datasets. Emerging research on dataset distillation …
When the curious abandon honesty: Federated learning is not private
In federated learning (FL), data does not leave personal devices when they are jointly
training a machine learning model. Instead, these devices share gradients, parameters, or …
training a machine learning model. Instead, these devices share gradients, parameters, or …
Causality-inspired single-source domain generalization for medical image segmentation
Deep learning models usually suffer from the domain shift issue, where models trained on
one source domain do not generalize well to other unseen domains. In this work, we …
one source domain do not generalize well to other unseen domains. In this work, we …
Deep learning on graphs: A survey
Deep learning has been shown to be successful in a number of domains, ranging from
acoustics, images, to natural language processing. However, applying deep learning to the …
acoustics, images, to natural language processing. However, applying deep learning to the …
Neural architecture search on imagenet in four gpu hours: A theoretically inspired perspective
Neural Architecture Search (NAS) has been explosively studied to automate the discovery of
top-performer neural networks. Current works require heavy training of supernet or intensive …
top-performer neural networks. Current works require heavy training of supernet or intensive …
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
Recently, deep learning has unlocked unprecedented success in various domains,
especially using images, text, and speech. However, deep learning is only beneficial if the …
especially using images, text, and speech. However, deep learning is only beneficial if the …
Neural redshift: Random networks are not random functions
Our understanding of the generalization capabilities of neural networks NNs is still
incomplete. Prevailing explanations are based on implicit biases of gradient descent GD but …
incomplete. Prevailing explanations are based on implicit biases of gradient descent GD but …