A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

Deep neural network concepts for background subtraction: A systematic review and comparative evaluation

T Bouwmans, S Javed, M Sultana, SK Jung - Neural Networks, 2019 - Elsevier
Conventional neural networks have been demonstrated to be a powerful framework for
background subtraction in video acquired by static cameras. Indeed, the well-known Self …

Dataset condensation with distribution matching

B Zhao, H Bilen - Proceedings of the IEEE/CVF Winter …, 2023 - openaccess.thecvf.com
Computational cost of training state-of-the-art deep models in many learning problems is
rapidly increasing due to more sophisticated models and larger datasets. A recent promising …

Datadam: Efficient dataset distillation with attention matching

A Sajedi, S Khaki, E Amjadian, LZ Liu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Researchers have long tried to minimize training costs in deep learning while maintaining
strong generalization across diverse datasets. Emerging research on dataset distillation …

When the curious abandon honesty: Federated learning is not private

F Boenisch, A Dziedzic, R Schuster… - 2023 IEEE 8th …, 2023 - ieeexplore.ieee.org
In federated learning (FL), data does not leave personal devices when they are jointly
training a machine learning model. Instead, these devices share gradients, parameters, or …

Causality-inspired single-source domain generalization for medical image segmentation

C Ouyang, C Chen, S Li, Z Li, C Qin… - … on Medical Imaging, 2022 - ieeexplore.ieee.org
Deep learning models usually suffer from the domain shift issue, where models trained on
one source domain do not generalize well to other unseen domains. In this work, we …

Deep learning on graphs: A survey

Z Zhang, P Cui, W Zhu - IEEE Transactions on Knowledge and …, 2020 - ieeexplore.ieee.org
Deep learning has been shown to be successful in a number of domains, ranging from
acoustics, images, to natural language processing. However, applying deep learning to the …

Neural architecture search on imagenet in four gpu hours: A theoretically inspired perspective

W Chen, X Gong, Z Wang - arxiv preprint arxiv:2102.11535, 2021 - arxiv.org
Neural Architecture Search (NAS) has been explosively studied to automate the discovery of
top-performer neural networks. Current works require heavy training of supernet or intensive …

Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

MA Schulz, BTT Yeo, JT Vogelstein… - Nature …, 2020 - nature.com
Recently, deep learning has unlocked unprecedented success in various domains,
especially using images, text, and speech. However, deep learning is only beneficial if the …

Neural redshift: Random networks are not random functions

D Teney, AM Nicolicioiu, V Hartmann… - Proceedings of the …, 2024 - openaccess.thecvf.com
Our understanding of the generalization capabilities of neural networks NNs is still
incomplete. Prevailing explanations are based on implicit biases of gradient descent GD but …