A survey on efficient convolutional neural networks and hardware acceleration

D Ghimire, D Kil, S Kim - Electronics, 2022 - mdpi.com
Over the past decade, deep-learning-based representations have demonstrated remarkable
performance in academia and industry. The learning capability of convolutional neural …

FPGA HLS today: successes, challenges, and opportunities

J Cong, J Lau, G Liu, S Neuendorffer, P Pan… - ACM Transactions on …, 2022 - dl.acm.org
The year 2011 marked an important transition for FPGA high-level synthesis (HLS), as it
went from prototy** to deployment. A decade later, in this article, we assess the progress …

2022 roadmap on neuromorphic computing and engineering

DV Christensen, R Dittmann… - Neuromorphic …, 2022 - iopscience.iop.org
Modern computation based on von Neumann architecture is now a mature cutting-edge
science. In the von Neumann architecture, processing and memory units are implemented …

Pruning and quantization for deep neural network acceleration: A survey

T Liang, J Glossner, L Wang, S Shi, X Zhang - Neurocomputing, 2021 - Elsevier
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …

Binary neural networks: A survey

H Qin, R Gong, X Liu, X Bai, J Song, N Sebe - Pattern Recognition, 2020 - Elsevier
The binary neural network, largely saving the storage and computation, serves as a
promising technique for deploying deep models on resource-limited devices. However, the …

Edge AI: On-demand accelerating deep neural network inference via edge computing

E Li, L Zeng, Z Zhou, X Chen - IEEE transactions on wireless …, 2019 - ieeexplore.ieee.org
As a key technology of enabling Artificial Intelligence (AI) applications in 5G era, Deep
Neural Networks (DNNs) have quickly attracted widespread attention. However, it is …

Efficient hardware architectures for accelerating deep neural networks: Survey

P Dhilleswararao, S Boppu, MS Manikandan… - IEEE …, 2022 - ieeexplore.ieee.org
In the modern-day era of technology, a paradigm shift has been witnessed in the areas
involving applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep …

{TVM}: An automated {End-to-End} optimizing compiler for deep learning

T Chen, T Moreau, Z Jiang, L Zheng, E Yan… - … USENIX Symposium on …, 2018 - usenix.org
There is an increasing need to bring machine learning to a wide diversity of hardware
devices. Current frameworks rely on vendor-specific operator libraries and optimize for a …

Enable deep learning on mobile devices: Methods, systems, and applications

H Cai, J Lin, Y Lin, Z Liu, H Tang, H Wang… - ACM Transactions on …, 2022 - dl.acm.org
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial
intelligence (AI), including computer vision, natural language processing, and speech …

FPGA-based accelerators of deep learning networks for learning and classification: A review

A Shawahna, SM Sait, A El-Maleh - ieee Access, 2018 - ieeexplore.ieee.org
Due to recent advances in digital technologies, and availability of credible data, an area of
artificial intelligence, deep learning, has emerged and has demonstrated its ability and …