A survey on evaluation of large language models

Y Chang, X Wang, J Wang, Y Wu, L Yang… - ACM Transactions on …, 2024 - dl.acm.org
Large language models (LLMs) are gaining increasing popularity in both academia and
industry, owing to their unprecedented performance in various applications. As LLMs …

Recommender systems in the era of large language models (llms)

Z Zhao, W Fan, J Li, Y Liu, X Mei, Y Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys)
have become an important component of our daily life, providing personalized suggestions …

A survey on large language models for recommendation

L Wu, Z Zheng, Z Qiu, H Wang, H Gu, T Shen, C Qin… - World Wide Web, 2024 - Springer
Abstract Large Language Models (LLMs) have emerged as powerful tools in the field of
Natural Language Processing (NLP) and have recently gained significant attention in the …

Tallrec: An effective and efficient tuning framework to align large language model with recommendation

K Bao, J Zhang, Y Zhang, W Wang, F Feng… - Proceedings of the 17th …, 2023 - dl.acm.org
Large Language Models (LLMs) have demonstrated remarkable performance across
diverse domains, thereby prompting researchers to explore their potential for use in …

Recommendation as instruction following: A large language model empowered recommendation approach

J Zhang, R **e, Y Hou, X Zhao, L Lin… - ACM Transactions on …, 2023 - dl.acm.org
In the past decades, recommender systems have attracted much attention in both research
and industry communities. Existing recommendation models mainly learn the underlying …

When large language models meet personalization: Perspectives of challenges and opportunities

J Chen, Z Liu, X Huang, C Wu, Q Liu, G Jiang, Y Pu… - World Wide Web, 2024 - Springer
The advent of large language models marks a revolutionary breakthrough in artificial
intelligence. With the unprecedented scale of training and model parameters, the capability …

Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation

J Zhang, K Bao, Y Zhang, W Wang, F Feng… - Proceedings of the 17th …, 2023 - dl.acm.org
The remarkable achievements of Large Language Models (LLMs) have led to the
emergence of a novel recommendation paradigm—Recommendation via LLM (RecLLM) …

Llara: Large language-recommendation assistant

J Liao, S Li, Z Yang, J Wu, Y Yuan, X Wang… - Proceedings of the 47th …, 2024 - dl.acm.org
Sequential recommendation aims to predict users' next interaction with items based on their
past engagement sequence. Recently, the advent of Large Language Models (LLMs) has …

Llmrec: Large language models with graph augmentation for recommendation

W Wei, X Ren, J Tang, Q Wang, L Su, S Cheng… - Proceedings of the 17th …, 2024 - dl.acm.org
The problem of data sparsity has long been a challenge in recommendation systems, and
previous studies have attempted to address this issue by incorporating side information …

How can recommender systems benefit from large language models: A survey

J Lin, X Dai, Y **, W Liu, B Chen, H Zhang… - ACM Transactions on …, 2023 - dl.acm.org
With the rapid development of online services and web applications, recommender systems
(RS) have become increasingly indispensable for mitigating information overload and …