A recent investigation on detection and classification of epileptic seizure techniques using EEG signal

S Saminu, G Xu, Z Shuai, I Abd El Kader, AH Jabire… - Brain sciences, 2021 - mdpi.com
The benefits of early detection and classification of epileptic seizures in analysis, monitoring
and diagnosis for the realization and actualization of computer-aided devices and recent …

EEG seizure detection: concepts, techniques, challenges, and future trends

AA Ein Shoka, MM Dessouky, A El-Sayed… - Multimedia Tools and …, 2023 - Springer
A central nervous system disorder is usually referred to as epilepsy. In epilepsy brain activity
becomes abnormal, leading to times of abnormal behavior or seizures, and at times loss of …

Self-supervised learning for electroencephalography

MH Rafiei, LV Gauthier, H Adeli… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Decades of research have shown machine learning superiority in discovering highly
nonlinear patterns embedded in electroencephalography (EEG) records compared with …

Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies

A Shoeibi, N Ghassemi, M Khodatars… - … Signal Processing and …, 2022 - Elsevier
Epileptic seizures are one of the most crucial neurological disorders, and their early
diagnosis will help the clinicians to provide accurate treatment for the patients. The …

Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning

M Varlı, H Yılmaz - Journal of Computational Science, 2023 - Elsevier
Epilepsy stands out as one of the common neurological diseases. The neural activity of the
brain is observed using electroencephalography (EEG), which allows the diagnosis of …

A review of the role of machine learning techniques towards brain–computer interface applications

S Rasheed - Machine Learning and Knowledge Extraction, 2021 - mdpi.com
This review article provides a deep insight into the Brain–Computer Interface (BCI) and the
application of Machine Learning (ML) technology in BCIs. It investigates the various types of …

Smart neurocare approach for detection of epileptic seizures using deep learning based temporal analysis of EEG patterns

K Singh, J Malhotra - Multimedia Tools and Applications, 2022 - Springer
Epilepsy is a psychosocial neurological disorder, which emerges as a major threat to public
health. In this age of the internet of things, the smart diagnosis of epilepsy has gained huge …

Epileptic seizures detection in EEG signals using fusion handcrafted and deep learning features

A Malekzadeh, A Zare, M Yaghoobi, HR Kobravi… - Sensors, 2021 - mdpi.com
Epilepsy is a brain disorder disease that affects people's quality of life.
Electroencephalography (EEG) signals are used to diagnose epileptic seizures. This paper …

Epileptic seizure detection using a hybrid 1D CNN‐machine learning approach from EEG data

F Hassan, SF Hussain… - Journal of Healthcare …, 2022 - Wiley Online Library
Electroencephalography (EEG) is a widely used technique for the detection of epileptic
seizures. It can be recorded in a noninvasive manner to present the electrical activity of the …

Automatic epileptic seizure detection in EEG signals using sparse common spatial pattern and adaptive short-time Fourier transform-based synchrosqueezing …

M Amiri, H Aghaeinia, HR Amindavar - Biomedical Signal Processing and …, 2023 - Elsevier
Epilepsy can now be diagnosed more accurately and quickly due to computer-aided seizure
detection utilizing Electroencephalography (EEG) recordings. In this work, a novel method …